![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nolt02olem | Structured version Visualization version GIF version |
Description: Lemma for nolt02o 31845. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴 ⊆ 𝑋. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nolt02olem | ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 31811 | . . . 4 ⊢ ¬ ∅ ∈ {1𝑜, 2𝑜} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ ∅ ∈ {1𝑜, 2𝑜}) |
3 | simpl3 1066 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) = ∅) | |
4 | simpl1 1064 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 ∈ No ) | |
5 | norn 31804 | . . . . . 6 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1𝑜, 2𝑜}) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1𝑜, 2𝑜}) |
7 | nofun 31802 | . . . . . . 7 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
8 | 7 | 3ad2ant1 1082 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → Fun 𝐴) |
9 | fvelrn 6352 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
10 | 8, 9 | sylan 488 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) |
11 | 6, 10 | sseldd 3604 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ {1𝑜, 2𝑜}) |
12 | 3, 11 | eqeltrrd 2702 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1𝑜, 2𝑜}) |
13 | 2, 12 | mtand 691 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴) |
14 | nodmon 31803 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
15 | 14 | 3ad2ant1 1082 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ∈ On) |
16 | simp2 1062 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → 𝑋 ∈ On) | |
17 | ontri1 5757 | . . 3 ⊢ ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) | |
18 | 15, 16, 17 | syl2anc 693 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) |
19 | 13, 18 | mpbird 247 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∅c0 3915 {cpr 4179 dom cdm 5114 ran crn 5115 Oncon0 5723 Fun wfun 5882 ‘cfv 5888 1𝑜c1o 7553 2𝑜c2o 7554 No csur 31793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-2o 7561 df-no 31796 |
This theorem is referenced by: nolt02o 31845 |
Copyright terms: Public domain | W3C validator |