MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovf Structured version   Visualization version   GIF version

Theorem numclwwlkovf 27213
Description: Value of operation 𝐹, mapping a vertex 𝑣 and a positive integer 𝑛 to the "(For a fixed vertex v, let f(n) be the number of) walks from v to v of length n" according to definition 5 in [Huneke] p. 2. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 28-May-2021.)
Hypothesis
Ref Expression
numclwwlkovf.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
numclwwlkovf ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovf
StepHypRef Expression
1 oveq1 6657 . . . 4 (𝑛 = 𝑁 → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺))
21adantl 482 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑛 ClWWalksN 𝐺) = (𝑁 ClWWalksN 𝐺))
3 eqeq2 2633 . . . 4 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
43adantr 481 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
52, 4rabeqbidv 3195 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
6 numclwwlkovf.f . 2 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
7 ovex 6678 . . 3 (𝑁 ClWWalksN 𝐺) ∈ V
87rabex 4813 . 2 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ V
95, 6, 8ovmpt2a 6791 1 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  cn 11020   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  numclwwlkffin  27214  numclwwlkovfel2  27216  numclwwlkovf2  27217  extwwlkfab  27223  numclwwlkqhash  27233  numclwwlk3lem  27241  numclwwlk4  27244
  Copyright terms: Public domain W3C validator