MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  extwwlkfab Structured version   Visualization version   GIF version

Theorem extwwlkfab 27223
Description: The set (𝑋𝐶𝑁) of closed walks (having a fixed length greater than one and starting at a fixed vertex) with the last but two vertex is identical with the first (and therefore last) vertex can be constructed from the set (𝑋𝐹(𝑁 − 2)) of closed walks with length smaller by 2 than the fixed length appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 ≤ 𝑁 is required since for 𝑁 = 2: (𝑋𝐹(𝑁 − 2)) = (𝑋𝐹0) = ∅, see umgrclwwlksge2 26912 stating that a closed walk of length 0 is not represented as word, at least not for an undirected simple graph. (Contributed by Alexander van der Vekens, 18-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v 𝑉 = (Vtx‘𝐺)
extwwlkfab.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
extwwlkfab ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)

Proof of Theorem extwwlkfab
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 11729 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
21anim2i 593 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉𝑁 ∈ (ℤ‘2)))
3 extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
43numclwwlkovg 27220 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
52, 4syl 17 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
653adant1 1079 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
7 3simpb 1059 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘3)))
87adantr 481 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘3)))
9 simpr 477 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
10 simpr 477 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
11 extwwlkfablem2 27210 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
128, 9, 10, 11syl2an3an 1386 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → (𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
13 simpl 473 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤‘0) = 𝑋)
1413adantl 482 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → (𝑤‘0) = 𝑋)
1512, 14jca 554 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
161anim2i 593 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘3)) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘2)))
17163adant2 1080 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘2)))
1817adantr 481 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘2)))
19 extwwlkfablem1 27207 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
2018, 9, 10, 19syl2an3an 1386 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑤‘0)))
21 oveq2 6658 . . . . . . . . . . 11 (𝑋 = (𝑤‘0) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2221eqcoms 2630 . . . . . . . . . 10 ((𝑤‘0) = 𝑋 → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2322adantr 481 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2423adantl 482 . . . . . . . 8 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx (𝑤‘0)))
2520, 24eleqtrrd 2704 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))
2610, 13eqtrd 2656 . . . . . . . 8 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤‘(𝑁 − 2)) = 𝑋)
2726adantl 482 . . . . . . 7 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → (𝑤‘(𝑁 − 2)) = 𝑋)
2815, 25, 273jca 1242 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))) → (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))
2928ex 450 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
30 simpl 473 . . . . . . . . . 10 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘0) = 𝑋)
31 simpr 477 . . . . . . . . . . 11 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = 𝑋)
3230eqcomd 2628 . . . . . . . . . . 11 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → 𝑋 = (𝑤‘0))
3331, 32eqtrd 2656 . . . . . . . . . 10 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → (𝑤‘(𝑁 − 2)) = (𝑤‘0))
3430, 33jca 554 . . . . . . . . 9 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))
3534ex 450 . . . . . . . 8 ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) = 𝑋 → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
3635a1d 25 . . . . . . 7 ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) → ((𝑤‘(𝑁 − 2)) = 𝑋 → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))))
3736adantl 482 . . . . . 6 (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) → ((𝑤‘(𝑁 − 2)) = 𝑋 → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))))
38373imp 1256 . . . . 5 ((((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))
3929, 38impbid1 215 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) ↔ (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
40 ige3m2fz 12365 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
41 oveq2 6658 . . . . . . . . . . . . . . . 16 ((#‘𝑤) = 𝑁 → (1...(#‘𝑤)) = (1...𝑁))
4241eleq2d 2687 . . . . . . . . . . . . . . 15 ((#‘𝑤) = 𝑁 → ((𝑁 − 2) ∈ (1...(#‘𝑤)) ↔ (𝑁 − 2) ∈ (1...𝑁)))
4340, 42syl5ibr 236 . . . . . . . . . . . . . 14 ((#‘𝑤) = 𝑁 → (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...(#‘𝑤))))
4443adantl 482 . . . . . . . . . . . . 13 ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...(#‘𝑤))))
45 simpl 473 . . . . . . . . . . . . 13 ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 𝑁) → 𝑤 ∈ Word 𝑉)
4644, 45jctild 566 . . . . . . . . . . . 12 ((𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 𝑁) → (𝑁 ∈ (ℤ‘3) → (𝑤 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ (1...(#‘𝑤)))))
47 extwwlkfab.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
4847clwwlknbp 26885 . . . . . . . . . . . 12 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (#‘𝑤) = 𝑁))
4946, 48syl11 33 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ (1...(#‘𝑤)))))
50493ad2ant3 1084 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → (𝑤 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ (1...(#‘𝑤)))))
5150imp 445 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ (1...(#‘𝑤))))
52 swrd0fv0 13440 . . . . . . . . 9 ((𝑤 ∈ Word 𝑉 ∧ (𝑁 − 2) ∈ (1...(#‘𝑤))) → ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = (𝑤‘0))
5351, 52syl 17 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = (𝑤‘0))
5453eqcomd 2628 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤‘0) = ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0))
5554eqeq1d 2624 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤‘0) = 𝑋 ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋))
5655anbi2d 740 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋)))
57563anbi1d 1403 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
58 uz3m2nn 11731 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
5958anim2i 593 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
60593adant1 1079 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ))
61 extwwlkfab.f . . . . . . . . . . 11 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
6261numclwwlkovf 27213 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (𝑋𝐹(𝑁 − 2)) = {𝑤 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
6362eleq2d 2687 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ↔ (𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ {𝑤 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}))
6460, 63syl 17 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ↔ (𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ {𝑤 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}))
65 fveq1 6190 . . . . . . . . . 10 (𝑢 = (𝑤 substr ⟨0, (𝑁 − 2)⟩) → (𝑢‘0) = ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0))
6665eqeq1d 2624 . . . . . . . . 9 (𝑢 = (𝑤 substr ⟨0, (𝑁 − 2)⟩) → ((𝑢‘0) = 𝑋 ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋))
67 fveq1 6190 . . . . . . . . . . 11 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
6867eqeq1d 2624 . . . . . . . . . 10 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑋 ↔ (𝑢‘0) = 𝑋))
6968cbvrabv 3199 . . . . . . . . 9 {𝑤 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑢 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∣ (𝑢‘0) = 𝑋}
7066, 69elrab2 3366 . . . . . . . 8 ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ {𝑤 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋))
7164, 70syl6bb 276 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋)))
72713anbi1d 1403 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ (((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
7372bicomd 213 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
7473adantr 481 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → ((((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩)‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
7539, 57, 743bitrd 294 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) ↔ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
7675rabbidva 3188 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
776, 76eqtrd 2656 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  cop 4183  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937  cmin 10266  cn 11020  2c2 11070  3c3 11071  cuz 11687  ...cfz 12326  #chash 13117  Word cword 13291   substr csubstr 13295  Vtxcvtx 25874   USGraph cusgr 26044   NeighbVtx cnbgr 26224   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk1lem2foa  27224  numclwlk1lem2f  27225
  Copyright terms: Public domain W3C validator