![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > numinfctb | Structured version Visualization version GIF version |
Description: A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
Ref | Expression |
---|---|
numinfctb | ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 8543 | . . . . 5 ⊢ ω ∈ On | |
2 | onenon 8775 | . . . . 5 ⊢ (ω ∈ On → ω ∈ dom card) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ω ∈ dom card |
4 | domtri2 8815 | . . . 4 ⊢ ((ω ∈ dom card ∧ 𝑆 ∈ dom card) → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω)) | |
5 | 3, 4 | mpan 706 | . . 3 ⊢ (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω)) |
6 | isfinite 8549 | . . . 4 ⊢ (𝑆 ∈ Fin ↔ 𝑆 ≺ ω) | |
7 | 6 | notbii 310 | . . 3 ⊢ (¬ 𝑆 ∈ Fin ↔ ¬ 𝑆 ≺ ω) |
8 | 5, 7 | syl6bbr 278 | . 2 ⊢ (𝑆 ∈ dom card → (ω ≼ 𝑆 ↔ ¬ 𝑆 ∈ Fin)) |
9 | 8 | biimpar 502 | 1 ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 class class class wbr 4653 dom cdm 5114 Oncon0 5723 ωcom 7065 ≼ cdom 7953 ≺ csdm 7954 Fincfn 7955 cardccrd 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 |
This theorem is referenced by: isnumbasgrplem3 37675 |
Copyright terms: Public domain | W3C validator |