![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem3 | Structured version Visualization version GIF version |
Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrplem3 | ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 13147 | . . . . . 6 ⊢ (𝑆 ∈ Fin → (#‘𝑆) ∈ ℕ0) | |
2 | 1 | adantl 482 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) ∈ ℕ0) |
3 | eqid 2622 | . . . . . 6 ⊢ (ℤ/nℤ‘(#‘𝑆)) = (ℤ/nℤ‘(#‘𝑆)) | |
4 | 3 | zncrng 19893 | . . . . 5 ⊢ ((#‘𝑆) ∈ ℕ0 → (ℤ/nℤ‘(#‘𝑆)) ∈ CRing) |
5 | crngring 18558 | . . . . 5 ⊢ ((ℤ/nℤ‘(#‘𝑆)) ∈ CRing → (ℤ/nℤ‘(#‘𝑆)) ∈ Ring) | |
6 | ringabl 18580 | . . . . 5 ⊢ ((ℤ/nℤ‘(#‘𝑆)) ∈ Ring → (ℤ/nℤ‘(#‘𝑆)) ∈ Abel) | |
7 | 2, 4, 5, 6 | 4syl 19 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (ℤ/nℤ‘(#‘𝑆)) ∈ Abel) |
8 | hashnncl 13157 | . . . . . . . 8 ⊢ (𝑆 ∈ Fin → ((#‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)) | |
9 | 8 | biimparc 504 | . . . . . . 7 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) ∈ ℕ) |
10 | eqid 2622 | . . . . . . . 8 ⊢ (Base‘(ℤ/nℤ‘(#‘𝑆))) = (Base‘(ℤ/nℤ‘(#‘𝑆))) | |
11 | 3, 10 | znhash 19907 | . . . . . . 7 ⊢ ((#‘𝑆) ∈ ℕ → (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) = (#‘𝑆)) |
12 | 9, 11 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) = (#‘𝑆)) |
13 | 12 | eqcomd 2628 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆))))) |
14 | simpr 477 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin) | |
15 | 3, 10 | znfi 19908 | . . . . . . 7 ⊢ ((#‘𝑆) ∈ ℕ → (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin) |
16 | 9, 15 | syl 17 | . . . . . 6 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin) |
17 | hashen 13135 | . . . . . 6 ⊢ ((𝑆 ∈ Fin ∧ (Base‘(ℤ/nℤ‘(#‘𝑆))) ∈ Fin) → ((#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆))))) | |
18 | 14, 16, 17 | syl2anc 693 | . . . . 5 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → ((#‘𝑆) = (#‘(Base‘(ℤ/nℤ‘(#‘𝑆)))) ↔ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆))))) |
19 | 13, 18 | mpbid 222 | . . . 4 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))) |
20 | 10 | isnumbasgrplem1 37671 | . . . 4 ⊢ (((ℤ/nℤ‘(#‘𝑆)) ∈ Abel ∧ 𝑆 ≈ (Base‘(ℤ/nℤ‘(#‘𝑆)))) → 𝑆 ∈ (Base “ Abel)) |
21 | 7, 19, 20 | syl2anc 693 | . . 3 ⊢ ((𝑆 ≠ ∅ ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
22 | 21 | adantll 750 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
23 | 2nn0 11309 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
24 | eqid 2622 | . . . . . . . 8 ⊢ (ℤ/nℤ‘2) = (ℤ/nℤ‘2) | |
25 | 24 | zncrng 19893 | . . . . . . 7 ⊢ (2 ∈ ℕ0 → (ℤ/nℤ‘2) ∈ CRing) |
26 | crngring 18558 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) ∈ CRing → (ℤ/nℤ‘2) ∈ Ring) | |
27 | 23, 25, 26 | mp2b 10 | . . . . . 6 ⊢ (ℤ/nℤ‘2) ∈ Ring |
28 | eqid 2622 | . . . . . . 7 ⊢ ((ℤ/nℤ‘2) freeLMod 𝑆) = ((ℤ/nℤ‘2) freeLMod 𝑆) | |
29 | 28 | frlmlmod 20093 | . . . . . 6 ⊢ (((ℤ/nℤ‘2) ∈ Ring ∧ 𝑆 ∈ dom card) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
30 | 27, 29 | mpan 706 | . . . . 5 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod) |
31 | lmodabl 18910 | . . . . 5 ⊢ (((ℤ/nℤ‘2) freeLMod 𝑆) ∈ LMod → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) | |
32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝑆 ∈ dom card → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
33 | 32 | ad2antrr 762 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel) |
34 | eqid 2622 | . . . . . . 7 ⊢ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) = (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) | |
35 | 24, 28, 34 | frlmpwfi 37668 | . . . . . 6 ⊢ (𝑆 ∈ dom card → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
36 | 35 | ad2antrr 762 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin)) |
37 | simpll 790 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ dom card) | |
38 | numinfctb 37673 | . . . . . . 7 ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | |
39 | 38 | adantlr 751 | . . . . . 6 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) |
40 | infpwfien 8885 | . . . . . 6 ⊢ ((𝑆 ∈ dom card ∧ ω ≼ 𝑆) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) | |
41 | 37, 39, 40 | syl2anc 693 | . . . . 5 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (𝒫 𝑆 ∩ Fin) ≈ 𝑆) |
42 | entr 8008 | . . . . 5 ⊢ (((Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ (𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ≈ 𝑆) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) | |
43 | 36, 41, 42 | syl2anc 693 | . . . 4 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → (Base‘((ℤ/nℤ‘2) freeLMod 𝑆)) ≈ 𝑆) |
44 | 43 | ensymd 8007 | . . 3 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) |
45 | 34 | isnumbasgrplem1 37671 | . . 3 ⊢ ((((ℤ/nℤ‘2) freeLMod 𝑆) ∈ Abel ∧ 𝑆 ≈ (Base‘((ℤ/nℤ‘2) freeLMod 𝑆))) → 𝑆 ∈ (Base “ Abel)) |
46 | 33, 44, 45 | syl2anc 693 | . 2 ⊢ (((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ (Base “ Abel)) |
47 | 22, 46 | pm2.61dan 832 | 1 ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∩ cin 3573 ∅c0 3915 𝒫 cpw 4158 class class class wbr 4653 dom cdm 5114 “ cima 5117 ‘cfv 5888 (class class class)co 6650 ωcom 7065 ≈ cen 7952 ≼ cdom 7953 Fincfn 7955 cardccrd 8761 ℕcn 11020 2c2 11070 ℕ0cn0 11292 #chash 13117 Basecbs 15857 Abelcabl 18194 Ringcrg 18547 CRingccrg 18548 LModclmod 18863 ℤ/nℤczn 19851 freeLMod cfrlm 20090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seqom 7543 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-hash 13118 df-dvds 14984 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-0g 16102 df-prds 16108 df-pws 16110 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-gim 17701 df-gic 17702 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-rnghom 18715 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 df-dsmm 20076 df-frlm 20091 |
This theorem is referenced by: isnumbasabl 37676 dfacbasgrp 37678 |
Copyright terms: Public domain | W3C validator |