![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaword2 | Structured version Visualization version GIF version |
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of [Suppes] p. 209. (Contributed by NM, 7-Dec-2004.) |
Ref | Expression |
---|---|
oaword2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +𝑜 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
2 | 0elon 5778 | . . . . 5 ⊢ ∅ ∈ On | |
3 | oawordri 7630 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +𝑜 𝐴) ⊆ (𝐵 +𝑜 𝐴))) | |
4 | 2, 3 | mp3an1 1411 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (∅ +𝑜 𝐴) ⊆ (𝐵 +𝑜 𝐴))) |
5 | oa0r 7618 | . . . . . 6 ⊢ (𝐴 ∈ On → (∅ +𝑜 𝐴) = 𝐴) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ +𝑜 𝐴) = 𝐴) |
7 | 6 | sseq1d 3632 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((∅ +𝑜 𝐴) ⊆ (𝐵 +𝑜 𝐴) ↔ 𝐴 ⊆ (𝐵 +𝑜 𝐴))) |
8 | 4, 7 | sylibd 229 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → 𝐴 ⊆ (𝐵 +𝑜 𝐴))) |
9 | 1, 8 | mpi 20 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → 𝐴 ⊆ (𝐵 +𝑜 𝐴)) |
10 | 9 | ancoms 469 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +𝑜 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∅c0 3915 Oncon0 5723 (class class class)co 6650 +𝑜 coa 7557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 |
This theorem is referenced by: oawordeulem 7634 nnarcl 7696 oaabslem 7723 oaabs2 7725 cantnfle 8568 |
Copyright terms: Public domain | W3C validator |