![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduval | Structured version Visualization version GIF version |
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
oduval.l | ⊢ ≤ = (le‘𝑂) |
Ref | Expression |
---|---|
oduval | ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑂 → 𝑎 = 𝑂) | |
2 | fveq2 6191 | . . . . . . 7 ⊢ (𝑎 = 𝑂 → (le‘𝑎) = (le‘𝑂)) | |
3 | 2 | cnveqd 5298 | . . . . . 6 ⊢ (𝑎 = 𝑂 → ◡(le‘𝑎) = ◡(le‘𝑂)) |
4 | 3 | opeq2d 4409 | . . . . 5 ⊢ (𝑎 = 𝑂 → 〈(le‘ndx), ◡(le‘𝑎)〉 = 〈(le‘ndx), ◡(le‘𝑂)〉) |
5 | 1, 4 | oveq12d 6668 | . . . 4 ⊢ (𝑎 = 𝑂 → (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
6 | df-odu 17129 | . . . 4 ⊢ ODual = (𝑎 ∈ V ↦ (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉)) | |
7 | ovex 6678 | . . . 4 ⊢ (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) ∈ V | |
8 | 5, 6, 7 | fvmpt 6282 | . . 3 ⊢ (𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
9 | fvprc 6185 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
10 | reldmsets 15886 | . . . . 5 ⊢ Rel dom sSet | |
11 | 10 | ovprc1 6684 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
12 | 9, 11 | eqtr4d 2659 | . . 3 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
13 | 8, 12 | pm2.61i 176 | . 2 ⊢ (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
14 | oduval.d | . 2 ⊢ 𝐷 = (ODual‘𝑂) | |
15 | oduval.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
16 | 15 | cnveqi 5297 | . . . 4 ⊢ ◡ ≤ = ◡(le‘𝑂) |
17 | 16 | opeq2i 4406 | . . 3 ⊢ 〈(le‘ndx), ◡ ≤ 〉 = 〈(le‘ndx), ◡(le‘𝑂)〉 |
18 | 17 | oveq2i 6661 | . 2 ⊢ (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
19 | 13, 14, 18 | 3eqtr4i 2654 | 1 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 〈cop 4183 ◡ccnv 5113 ‘cfv 5888 (class class class)co 6650 ndxcnx 15854 sSet csts 15855 lecple 15948 ODualcodu 17128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-sets 15864 df-odu 17129 |
This theorem is referenced by: oduleval 17131 odubas 17133 |
Copyright terms: Public domain | W3C validator |