MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduval Structured version   Visualization version   Unicode version

Theorem oduval 17130
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduval.d  |-  D  =  (ODual `  O )
oduval.l  |-  .<_  =  ( le `  O )
Assertion
Ref Expression
oduval  |-  D  =  ( O sSet  <. ( le `  ndx ) ,  `'  .<_  >. )

Proof of Theorem oduval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5  |-  ( a  =  O  ->  a  =  O )
2 fveq2 6191 . . . . . . 7  |-  ( a  =  O  ->  ( le `  a )  =  ( le `  O
) )
32cnveqd 5298 . . . . . 6  |-  ( a  =  O  ->  `' ( le `  a )  =  `' ( le
`  O ) )
43opeq2d 4409 . . . . 5  |-  ( a  =  O  ->  <. ( le `  ndx ) ,  `' ( le `  a ) >.  =  <. ( le `  ndx ) ,  `' ( le `  O ) >. )
51, 4oveq12d 6668 . . . 4  |-  ( a  =  O  ->  (
a sSet  <. ( le `  ndx ) ,  `' ( le `  a )
>. )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. ) )
6 df-odu 17129 . . . 4  |- ODual  =  ( a  e.  _V  |->  ( a sSet  <. ( le `  ndx ) ,  `' ( le `  a )
>. ) )
7 ovex 6678 . . . 4  |-  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O ) >.
)  e.  _V
85, 6, 7fvmpt 6282 . . 3  |-  ( O  e.  _V  ->  (ODual `  O )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. ) )
9 fvprc 6185 . . . 4  |-  ( -.  O  e.  _V  ->  (ODual `  O )  =  (/) )
10 reldmsets 15886 . . . . 5  |-  Rel  dom sSet
1110ovprc1 6684 . . . 4  |-  ( -.  O  e.  _V  ->  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. )  =  (/) )
129, 11eqtr4d 2659 . . 3  |-  ( -.  O  e.  _V  ->  (ODual `  O )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. ) )
138, 12pm2.61i 176 . 2  |-  (ODual `  O )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. )
14 oduval.d . 2  |-  D  =  (ODual `  O )
15 oduval.l . . . . 5  |-  .<_  =  ( le `  O )
1615cnveqi 5297 . . . 4  |-  `'  .<_  =  `' ( le `  O )
1716opeq2i 4406 . . 3  |-  <. ( le `  ndx ) ,  `'  .<_  >.  =  <. ( le `  ndx ) ,  `' ( le `  O ) >.
1817oveq2i 6661 . 2  |-  ( O sSet  <. ( le `  ndx ) ,  `'  .<_  >.
)  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O ) >.
)
1913, 14, 183eqtr4i 2654 1  |-  D  =  ( O sSet  <. ( le `  ndx ) ,  `'  .<_  >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   <.cop 4183   `'ccnv 5113   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   lecple 15948  ODualcodu 17128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sets 15864  df-odu 17129
This theorem is referenced by:  oduleval  17131  odubas  17133
  Copyright terms: Public domain W3C validator