MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinv Structured version   Visualization version   GIF version

Theorem grprinv 17469
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grprinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem grprinv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . 3 𝐵 = (Base‘𝐺)
2 grpinv.p . . 3 + = (+g𝐺)
31, 2grpcl 17430 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
4 grpinv.u . . 3 0 = (0g𝐺)
51, 4grpidcl 17450 . 2 (𝐺 ∈ Grp → 0𝐵)
61, 2, 4grplid 17452 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
71, 2grpass 17431 . 2 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
81, 2, 4grpinvex 17432 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
9 simpr 477 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
10 grpinv.n . . 3 𝑁 = (invg𝐺)
111, 10grpinvcl 17467 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
121, 2, 4, 10grplinv 17468 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
133, 5, 6, 7, 8, 9, 11, 12grprinvd 6873 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426
This theorem is referenced by:  grpinvid1  17470  grpinvid2  17471  grplrinv  17473  grpasscan1  17478  grpinvinv  17482  grplmulf1o  17489  grpinvadd  17493  grpsubid  17499  dfgrp3  17514  mulgdirlem  17572  subginv  17601  nmzsubg  17635  eqger  17644  qusinv  17653  ghminv  17667  conjnmz  17694  gacan  17738  cntzsubg  17769  oppggrp  17787  oppginv  17789  psgnuni  17919  sylow2blem3  18037  frgpuplem  18185  ringnegl  18594  unitrinv  18678  isdrng2  18757  lmodvnegid  18905  lmodvsinv2  19037  lspsolvlem  19142  evpmodpmf1o  19942  grpvrinv  20202  mdetralt  20414  ghmcnp  21918  qustgpopn  21923  isngp4  22416  clmvsrinv  22907  ogrpinvOLD  29715  ogrpinv0le  29716  ogrpaddltbi  29719  ogrpinv0lt  29723  ogrpinvlt  29724  archiabllem1b  29746  orngsqr  29804  ldepsprlem  42261
  Copyright terms: Public domain W3C validator