Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpsublt Structured version   Visualization version   GIF version

Theorem ogrpsublt 29722
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpsublt.0 𝐵 = (Base‘𝐺)
ogrpsublt.1 < = (lt‘𝐺)
ogrpsublt.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsublt ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))

Proof of Theorem ogrpsublt
StepHypRef Expression
1 simp3 1063 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
2 simp1 1061 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp)
3 simp21 1094 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
4 simp22 1095 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
5 eqid 2622 . . . . . . 7 (le‘𝐺) = (le‘𝐺)
6 ogrpsublt.1 . . . . . . 7 < = (lt‘𝐺)
75, 6pltval 16960 . . . . . 6 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
82, 3, 4, 7syl3anc 1326 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
91, 8mpbid 222 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋(le‘𝐺)𝑌𝑋𝑌))
109simpld 475 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
11 ogrpsublt.0 . . . 4 𝐵 = (Base‘𝐺)
12 ogrpsublt.2 . . . 4 = (-g𝐺)
1311, 5, 12ogrpsub 29717 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
1410, 13syld3an3 1371 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
159simprd 479 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
16 ogrpgrp 29703 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
172, 16syl 17 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ Grp)
18 simp23 1096 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑍𝐵)
1911, 12grpsubrcan 17496 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2017, 3, 4, 18, 19syl13anc 1328 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2120necon3bid 2838 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) ≠ (𝑌 𝑍) ↔ 𝑋𝑌))
2215, 21mpbird 247 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ≠ (𝑌 𝑍))
2311, 12grpsubcl 17495 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
2417, 3, 18, 23syl3anc 1326 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ∈ 𝐵)
2511, 12grpsubcl 17495 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
2617, 4, 18, 25syl3anc 1326 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑌 𝑍) ∈ 𝐵)
275, 6pltval 16960 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
282, 24, 26, 27syl3anc 1326 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
2914, 22, 28mpbir2and 957 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  ltcplt 16941  Grpcgrp 17422  -gcsg 17424  oGrpcogrp 29698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-omnd 29699  df-ogrp 29700
This theorem is referenced by:  archiabllem1a  29745  archiabllem2a  29748  archiabllem2c  29749
  Copyright terms: Public domain W3C validator