MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcan Structured version   Visualization version   GIF version

Theorem omcan 7649
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omcan (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem omcan
StepHypRef Expression
1 omordi 7646 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶)))
21ex 450 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶))))
32ancoms 469 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶))))
433adant2 1080 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐵𝐶 → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶))))
54imp 445 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 → (𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶)))
6 omordi 7646 . . . . . . . . 9 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵)))
76ex 450 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
87ancoms 469 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
983adant3 1081 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐴 → (𝐶𝐵 → (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
109imp 445 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 → (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵)))
115, 10orim12d 883 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) → ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶) ∨ (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
1211con3d 148 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (¬ ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶) ∨ (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵)) → ¬ (𝐵𝐶𝐶𝐵)))
13 omcl 7616 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
14 eloni 5733 . . . . . . 7 ((𝐴 ·𝑜 𝐵) ∈ On → Ord (𝐴 ·𝑜 𝐵))
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·𝑜 𝐵))
16 omcl 7616 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·𝑜 𝐶) ∈ On)
17 eloni 5733 . . . . . . 7 ((𝐴 ·𝑜 𝐶) ∈ On → Ord (𝐴 ·𝑜 𝐶))
1816, 17syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → Ord (𝐴 ·𝑜 𝐶))
19 ordtri3 5759 . . . . . 6 ((Ord (𝐴 ·𝑜 𝐵) ∧ Ord (𝐴 ·𝑜 𝐶)) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ ¬ ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶) ∨ (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
2015, 18, 19syl2an 494 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ ¬ ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶) ∨ (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
21203impdi 1381 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ ¬ ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶) ∨ (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
2221adantr 481 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ ¬ ((𝐴 ·𝑜 𝐵) ∈ (𝐴 ·𝑜 𝐶) ∨ (𝐴 ·𝑜 𝐶) ∈ (𝐴 ·𝑜 𝐵))))
23 eloni 5733 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
24 eloni 5733 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
25 ordtri3 5759 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2623, 24, 25syl2an 494 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
27263adant1 1079 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2827adantr 481 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2912, 22, 283imtr4d 283 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) → 𝐵 = 𝐶))
30 oveq2 6658 . 2 (𝐵 = 𝐶 → (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶))
3129, 30impbid1 215 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  c0 3915  Ord word 5722  Oncon0 5723  (class class class)co 6650   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omword  7650  fin1a2lem4  9225
  Copyright terms: Public domain W3C validator