![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omess0 | Structured version Visualization version GIF version |
Description: If the outer measure of a set is 0, then the outer measure of its subsets is 0. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
omess0.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omess0.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omess0.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
omess0.z | ⊢ (𝜑 → (𝑂‘𝐴) = 0) |
omess0.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
omess0 | ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omess0.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | omess0.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | omess0.s | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | omess0.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 3, 4 | sstrd 3613 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
6 | 1, 2, 5 | omexrcl 40721 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ*) |
7 | 0xr 10086 | . . 3 ⊢ 0 ∈ ℝ* | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ ℝ*) |
9 | 1, 2, 4, 3 | omessle 40712 | . . 3 ⊢ (𝜑 → (𝑂‘𝐵) ≤ (𝑂‘𝐴)) |
10 | omess0.z | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) = 0) | |
11 | 9, 10 | breqtrd 4679 | . 2 ⊢ (𝜑 → (𝑂‘𝐵) ≤ 0) |
12 | 1, 2, 5 | omege0 40747 | . 2 ⊢ (𝜑 → 0 ≤ (𝑂‘𝐵)) |
13 | 6, 8, 11, 12 | xrletrid 11986 | 1 ⊢ (𝜑 → (𝑂‘𝐵) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∪ cuni 4436 dom cdm 5114 ‘cfv 5888 0cc0 9936 ℝ*cxr 10073 ≤ cle 10075 OutMeascome 40703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-icc 12182 df-ome 40704 |
This theorem is referenced by: caragencmpl 40749 voncmpl 40835 |
Copyright terms: Public domain | W3C validator |