MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omv Structured version   Visualization version   GIF version

Theorem omv 7592
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem omv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5 (𝑦 = 𝐴 → (𝑥 +𝑜 𝑦) = (𝑥 +𝑜 𝐴))
21mpteq2dv 4745 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)))
3 rdgeq1 7507 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅))
42, 3syl 17 . . 3 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅))
54fveq1d 6193 . 2 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝑧))
6 fveq2 6191 . 2 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
7 df-omul 7565 . 2 ·𝑜 = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝑦)), ∅)‘𝑧))
8 fvex 6201 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵) ∈ V
95, 6, 7, 8ovmpt2 6796 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cmpt 4729  Oncon0 5723  cfv 5888  (class class class)co 6650  reccrdg 7505   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-omul 7565
This theorem is referenced by:  om0  7597  omsuc  7606  onmsuc  7609  omlim  7613
  Copyright terms: Public domain W3C validator