MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmsuc Structured version   Visualization version   GIF version

Theorem onmsuc 7609
Description: Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onmsuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))

Proof of Theorem onmsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7086 . . . . 5 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
2 nnon 7071 . . . . 5 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
31, 2syl 17 . . . 4 (𝐵 ∈ ω → suc 𝐵 ∈ On)
4 omv 7592 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘suc 𝐵))
53, 4sylan2 491 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘suc 𝐵))
61adantl 482 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
7 fvres 6207 . . . 4 (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘suc 𝐵))
86, 7syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘suc 𝐵))
95, 8eqtr4d 2659 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 suc 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘suc 𝐵))
10 ovex 6678 . . . . 5 (𝐴 ·𝑜 𝐵) ∈ V
11 oveq1 6657 . . . . . 6 (𝑥 = (𝐴 ·𝑜 𝐵) → (𝑥 +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
12 eqid 2622 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))
13 ovex 6678 . . . . . 6 ((𝐴 ·𝑜 𝐵) +𝑜 𝐴) ∈ V
1411, 12, 13fvmpt 6282 . . . . 5 ((𝐴 ·𝑜 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘(𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
1510, 14ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘(𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)
16 nnon 7071 . . . . . . 7 (𝐵 ∈ ω → 𝐵 ∈ On)
17 omv 7592 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
1816, 17sylan2 491 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
19 fvres 6207 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
2019adantl 482 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
2118, 20eqtr4d 2659 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘𝐵))
2221fveq2d 6195 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘(𝐴 ·𝑜 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘𝐵)))
2315, 22syl5eqr 2670 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘𝐵)))
24 frsuc 7532 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘𝐵)))
2524adantl 482 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘𝐵)))
2623, 25eqtr4d 2659 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅) ↾ ω)‘suc 𝐵))
279, 26eqtr4d 2659 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cmpt 4729  cres 5116  Oncon0 5723  suc csuc 5725  cfv 5888  (class class class)co 6650  ωcom 7065  reccrdg 7505   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-omul 7565
This theorem is referenced by:  om1  7622  nnmsuc  7687
  Copyright terms: Public domain W3C validator