MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0 Structured version   Visualization version   GIF version

Theorem om0 7597
Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
om0 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)

Proof of Theorem om0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 5778 . . 3 ∅ ∈ On
2 omv 7592 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·𝑜 ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘∅))
31, 2mpan2 707 . 2 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘∅))
4 0ex 4790 . . 3 ∅ ∈ V
54rdg0 7517 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘∅) = ∅
63, 5syl6eq 2672 1 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cmpt 4729  Oncon0 5723  cfv 5888  (class class class)co 6650  reccrdg 7505   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-omul 7565
This theorem is referenced by:  om0x  7599  oesuclem  7605  omcl  7616  om1  7622  omwordri  7652  om00  7655  odi  7659  omass  7660  oen0  7666  oeoa  7677  oeoelem  7678  oeeui  7682  nnm0  7685  cantnfle  8568  cantnfp1  8578
  Copyright terms: Public domain W3C validator