MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp2f Structured version   Visualization version   GIF version

Theorem opeliunxp2f 7336
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 5260. (Contributed by AV, 25-Oct-2020.)
Hypotheses
Ref Expression
opeliunxp2f.f 𝑥𝐸
opeliunxp2f.e (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2f (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem opeliunxp2f
StepHypRef Expression
1 df-br 4654 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 5227 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 2924 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 5239 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 221 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelexi 5158 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 225 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 3212 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 481 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfiu1 4550 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1110nfel2 2781 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
12 nfv 1843 . . . . 5 𝑥 𝐶𝐴
13 opeliunxp2f.f . . . . . 6 𝑥𝐸
1413nfel2 2781 . . . . 5 𝑥 𝐷𝐸
1512, 14nfan 1828 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1611, 15nfbi 1833 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
17 opeq1 4402 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1817eleq1d 2686 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
19 eleq1 2689 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
20 opeliunxp2f.e . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
2120eleq2d 2687 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
2219, 21anbi12d 747 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2318, 22bibi12d 335 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
24 opeliunxp 5170 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2516, 23, 24vtoclg1f 3265 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
267, 9, 25pm5.21nii 368 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wnfc 2751  wral 2912  Vcvv 3200  {csn 4177  cop 4183   ciun 4520   class class class wbr 4653   × cxp 5112  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  mpt2xeldm  7337  fsumcom2  14505  fprodcom2  14714
  Copyright terms: Public domain W3C validator