![]() |
Metamath
Proof Explorer Theorem List (p. 74 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | suppval1 7301* | The value of the operation constructing the support of a function. (Contributed by AV, 6-Apr-2019.) |
⊢ ((Fun 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋‘𝑖) ≠ 𝑍}) | ||
Theorem | suppvalfn 7302* | The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.) |
⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) | ||
Theorem | elsuppfn 7303 | An element of the support of a function with a given domain. (Contributed by AV, 27-May-2019.) |
⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) | ||
Theorem | cnvimadfsn 7304* | The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} | ||
Theorem | suppimacnvss 7305 | The support of functions "defined" by inverse images is a subset of the support defined by df-supp 7296. (Contributed by AV, 7-Apr-2019.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (◡𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍)) | ||
Theorem | suppimacnv 7306 | Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 7-Apr-2019.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = (◡𝑅 “ (V ∖ {𝑍}))) | ||
Theorem | frnsuppeq 7307 | Two ways of writing the support of a function with known codomain. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.) |
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | ||
Theorem | suppssdm 7308 | The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 | ||
Theorem | suppsnop 7309 | The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.) |
⊢ 𝐹 = {〈𝑋, 𝑌〉} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → (𝐹 supp 𝑍) = if(𝑌 = 𝑍, ∅, {𝑋})) | ||
Theorem | snopsuppss 7310 | The support of a singleton containing an ordered pair is a subset of the singleton containing the first element of the ordered pair, i.e. it is empty or the singleton itself. (Contributed by AV, 19-Jul-2019.) |
⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} | ||
Theorem | fvn0elsupp 7311 | If the function value for a given argument is not empty, the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 2-Jul-2019.) (Revised by AV, 4-Apr-2020.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺‘𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅)) | ||
Theorem | fvn0elsuppb 7312 | The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) | ||
Theorem | rexsupp 7313* | Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by AV, 27-May-2019.) |
⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (∃𝑥 ∈ (𝐹 supp 𝑍)𝜑 ↔ ∃𝑥 ∈ 𝑋 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | ||
Theorem | ressuppss 7314 | The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐹 ↾ 𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
Theorem | suppun 7315 | The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019.) |
⊢ (𝜑 → 𝐺 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) | ||
Theorem | ressuppssdif 7316 | The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹 ↾ 𝐵) supp 𝑍) ∪ (dom 𝐹 ∖ 𝐵))) | ||
Theorem | mptsuppdifd 7317* | The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) | ||
Theorem | mptsuppd 7318* | The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) | ||
Theorem | extmptsuppeq 7319* | The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐵 ∖ 𝐴)) → 𝑋 = 𝑍) ⇒ ⊢ (𝜑 → ((𝑛 ∈ 𝐴 ↦ 𝑋) supp 𝑍) = ((𝑛 ∈ 𝐵 ↦ 𝑋) supp 𝑍)) | ||
Theorem | suppfnss 7320* | The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.) |
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) | ||
Theorem | funsssuppss 7321 | The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019.) |
⊢ ((Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) | ||
Theorem | fnsuppres 7322 | Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.) |
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹 ↾ 𝐵) = (𝐵 × {𝑍}))) | ||
Theorem | fnsuppeq0 7323 | The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → ((𝐹 supp 𝑍) = ∅ ↔ 𝐹 = (𝐴 × {𝑍}))) | ||
Theorem | fczsupp0 7324 | The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.) |
⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ | ||
Theorem | suppss 7325* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑘) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) | ||
Theorem | suppssr 7326 | A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐴 ∖ 𝑊)) → (𝐹‘𝑋) = 𝑍) | ||
Theorem | suppssov1 7327* | Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | ||
Theorem | suppssof1 7328* | Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → (𝐴 supp 𝑌) ⊆ 𝐿) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) & ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) & ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴 ∘𝑓 𝑂𝐵) supp 𝑍) ⊆ 𝐿) | ||
Theorem | suppss2 7329* | Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) | ||
Theorem | suppsssn 7330* | Show that the support of a function is a subset of a singleton. (Contributed by AV, 21-Jul-2019.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ 𝑘 ≠ 𝑊) → 𝐵 = 𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ {𝑊}) | ||
Theorem | suppssfv 7331* | Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) & ⊢ (𝜑 → (𝐹‘𝑌) = 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐹‘𝐴)) supp 𝑍) ⊆ 𝐿) | ||
Theorem | suppofss1d 7332* | Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍𝑋𝑥) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑋𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
Theorem | suppofss2d 7333* | Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝑋𝑍) = 𝑍) ⇒ ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)) | ||
Theorem | supp0cosupp0 7334 | The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹 ∘ 𝐺) supp 𝑍) = ∅)) | ||
Theorem | imacosupp 7335 | The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹 ∘ 𝐺) supp 𝑍)) = (𝐹 supp 𝑍))) | ||
The following theorems are about maps-to operations (see df-mpt2 6655) where the domain of the second argument depends on the domain of the first argument, especially when the first argument is a pair and the base set of the second argument is the first component of the first argument, in short "x-maps-to operations". For labels, the abbreviations "mpt2x" are used (since "x" usually denotes the first argument). This is in line with the currently used conventions for such cases (see cbvmpt2x 6733, ovmpt2x 6789 and fmpt2x 7236). However, there is a proposal by Norman Megill to use the abbreviation "mpo" or "mpto" instead of "mpt2" (see beginning of set.mm). If this proposal will be realized, the labels in the following should also be adapted. If the first argument is an ordered pair, as in the following, the abbreviation is extended to "mpt2xop", and the maps-to operations are called "x-op maps-to operations" for short. | ||
Theorem | opeliunxp2f 7336* | Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 5260. (Contributed by AV, 25-Oct-2020.) |
⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) ⇒ ⊢ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) | ||
Theorem | mpt2xeldm 7337* | If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ (𝑁 ∈ (𝑋𝐹𝑌) → (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐷)) | ||
Theorem | mpt2xneldm 7338* | If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) ⇒ ⊢ ((𝑋 ∉ 𝐶 ∨ 𝑌 ∉ ⦋𝑋 / 𝑥⦌𝐷) → (𝑋𝐹𝑌) = ∅) | ||
Theorem | mpt2xopn0yelv 7339* | If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) | ||
Theorem | mpt2xopynvov0g 7340* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
Theorem | mpt2xopxnop0 7341* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is not an ordered pair, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ 𝑉 ∈ (V × V) → (𝑉𝐹𝐾) = ∅) | ||
Theorem | mpt2xopx0ov0 7342* | If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (∅𝐹𝐾) = ∅ | ||
Theorem | mpt2xopxprcov0 7343* | If the components of the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, are not sets, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
Theorem | mpt2xopynvov0 7344* | If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) ⇒ ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) | ||
Theorem | mpt2xopoveq 7345* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
Theorem | mpt2xopovel 7346* | Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | ||
Theorem | mpt2xopoveqd 7347* | Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) & ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) & ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) ⇒ ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | ||
Theorem | brovex 7348* | A binary relation of the value of an operation given by the "maps to" notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) & ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
Theorem | brovmpt2ex 7349* | A binary relation of the value of an operation given by the "maps to" notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) ⇒ ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | ||
Theorem | sprmpt2d 7350* | The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 20-Jun-2019.) |
⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥(𝑣𝑅𝑒)𝑦 ∧ 𝜒)}) & ⊢ ((𝜑 ∧ 𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) & ⊢ (𝜑 → ∀𝑥∀𝑦(𝑥(𝑉𝑅𝐸)𝑦 → 𝜃)) & ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜃} ∈ V) ⇒ ⊢ (𝜑 → (𝑉𝑀𝐸) = {〈𝑥, 𝑦〉 ∣ (𝑥(𝑉𝑅𝐸)𝑦 ∧ 𝜓)}) | ||
Syntax | ctpos 7351 | The transposition of a function. |
class tpos 𝐹 | ||
Definition | df-tpos 7352* | Define the transposition of a function, which is a function 𝐺 = tpos 𝐹 satisfying 𝐺(𝑥, 𝑦) = 𝐹(𝑦, 𝑥). (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
Theorem | tposss 7353 | Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | ||
Theorem | tposeq 7354 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) | ||
Theorem | tposeqd 7355 | Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → tpos 𝐹 = tpos 𝐺) | ||
Theorem | tposssxp 7356 | The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | ||
Theorem | reltpos 7357 | The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ Rel tpos 𝐹 | ||
Theorem | brtpos2 7358 | Value of the transposition at a pair 〈𝐴, 𝐵〉. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝐴}𝐹𝐵))) | ||
Theorem | brtpos0 7359 | The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows us to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 7361. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) | ||
Theorem | reldmtpos 7360 | Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | ||
Theorem | brtpos 7361 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
Theorem | ottpos 7362 | The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
⊢ (𝐶 ∈ 𝑉 → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) | ||
Theorem | relbrtpos 7363 | The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ (Rel 𝐹 → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | ||
Theorem | dmtpos 7364 | The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | ||
Theorem | rntpos 7365 | The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | ||
Theorem | tposexg 7366 | The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐹 ∈ 𝑉 → tpos 𝐹 ∈ V) | ||
Theorem | ovtpos 7367 | The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from (1...𝑚) × (1...𝑛) to ℝ or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴) | ||
Theorem | tposfun 7368 | The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Fun 𝐹 → Fun tpos 𝐹) | ||
Theorem | dftpos2 7369* | Alternate definition of tpos when 𝐹 has relational domain. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) | ||
Theorem | dftpos3 7370* | Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 5122. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ (Rel dom 𝐹 → tpos 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 〈𝑦, 𝑥〉𝐹𝑧}) | ||
Theorem | dftpos4 7371* | Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ ∪ ◡{𝑥})) | ||
Theorem | tpostpos 7372 | Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V)) | ||
Theorem | tpostpos2 7373 | Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.) |
⊢ ((Rel 𝐹 ∧ Rel dom 𝐹) → tpos tpos 𝐹 = 𝐹) | ||
Theorem | tposfn2 7374 | The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | ||
Theorem | tposfo2 7375 | Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) | ||
Theorem | tposf2 7376 | The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) | ||
Theorem | tposf12 7377 | Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) | ||
Theorem | tposf1o2 7378 | Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (Rel 𝐴 → (𝐹:𝐴–1-1-onto→𝐵 → tpos 𝐹:◡𝐴–1-1-onto→𝐵)) | ||
Theorem | tposfo 7379 | The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 → tpos 𝐹:(𝐵 × 𝐴)–onto→𝐶) | ||
Theorem | tposf 7380 | The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 → tpos 𝐹:(𝐵 × 𝐴)⟶𝐶) | ||
Theorem | tposfn 7381 | Functionality of a transposition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝐹 Fn (𝐴 × 𝐵) → tpos 𝐹 Fn (𝐵 × 𝐴)) | ||
Theorem | tpos0 7382 | Transposition of the empty set. (Contributed by NM, 10-Sep-2015.) |
⊢ tpos ∅ = ∅ | ||
Theorem | tposco 7383 | Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ tpos (𝐹 ∘ 𝐺) = (𝐹 ∘ tpos 𝐺) | ||
Theorem | tpossym 7384* | Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ (𝐹 Fn (𝐴 × 𝐴) → (tpos 𝐹 = 𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐹𝑦) = (𝑦𝐹𝑥))) | ||
Theorem | tposeqi 7385 | Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = 𝐺 ⇒ ⊢ tpos 𝐹 = tpos 𝐺 | ||
Theorem | tposex 7386 | A transposition is a set. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 ∈ V ⇒ ⊢ tpos 𝐹 ∈ V | ||
Theorem | nftpos 7387 | Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥tpos 𝐹 | ||
Theorem | tposoprab 7388* | Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ 𝜑} | ||
Theorem | tposmpt2 7389* | Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | tposconst 7390 | The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018.) |
⊢ tpos ((𝐴 × 𝐵) × {𝐶}) = ((𝐵 × 𝐴) × {𝐶}) | ||
Syntax | ccur 7391 | Extend class notation to include the currying function. |
class curry 𝐴 | ||
Syntax | cunc 7392 | Extend class notation to include the uncurrying function. |
class uncurry 𝐴 | ||
Definition | df-cur 7393* | Define the currying of 𝐹, which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) | ||
Definition | df-unc 7394* | Define the uncurrying of 𝐹, which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ uncurry 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐹‘𝑥)𝑧} | ||
Theorem | mpt2curryd 7395* | The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) | ||
Theorem | mpt2curryvald 7396* | The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | fvmpt2curryd 7397* | The value of the value of a curried operation given in maps-to notation is the operation value of the original operation. (Contributed by AV, 27-Oct-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) ⇒ ⊢ (𝜑 → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) | ||
Syntax | cund 7398 | Extend class notation with undefined value function. |
class Undef | ||
Definition | df-undef 7399 | Define the undefined value function, whose value at set 𝑠 is guaranteed not to be a member of 𝑠 (see pwuninel 7401). (Contributed by NM, 15-Sep-2011.) |
⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | ||
Theorem | pwuninel2 7400 | Direct proof of pwuninel 7401 avoiding functions and thus several ZF axioms. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |