MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcom2 Structured version   Visualization version   GIF version

Theorem fsumcom2 14505
Description: Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)
Hypotheses
Ref Expression
fsumcom2.1 (𝜑𝐴 ∈ Fin)
fsumcom2.2 (𝜑𝐶 ∈ Fin)
fsumcom2.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fsumcom2.4 (𝜑 → ((𝑗𝐴𝑘𝐵) ↔ (𝑘𝐶𝑗𝐷)))
fsumcom2.5 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐸 ∈ ℂ)
Assertion
Ref Expression
fsumcom2 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐸 = Σ𝑘𝐶 Σ𝑗𝐷 𝐸)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐶,𝑗,𝑘   𝜑,𝑗,𝑘   𝐵,𝑘   𝐷,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐷(𝑘)   𝐸(𝑗,𝑘)

Proof of Theorem fsumcom2
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5227 . . . . . . . . 9 Rel ({𝑗} × 𝐵)
21rgenw 2924 . . . . . . . 8 𝑗𝐴 Rel ({𝑗} × 𝐵)
3 reliun 5239 . . . . . . . 8 (Rel 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐵))
42, 3mpbir 221 . . . . . . 7 Rel 𝑗𝐴 ({𝑗} × 𝐵)
5 relcnv 5503 . . . . . . 7 Rel 𝑘𝐶 ({𝑘} × 𝐷)
6 ancom 466 . . . . . . . . . . . 12 ((𝑥 = 𝑗𝑦 = 𝑘) ↔ (𝑦 = 𝑘𝑥 = 𝑗))
7 vex 3203 . . . . . . . . . . . . 13 𝑥 ∈ V
8 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
97, 8opth 4945 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ↔ (𝑥 = 𝑗𝑦 = 𝑘))
108, 7opth 4945 . . . . . . . . . . . 12 (⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ↔ (𝑦 = 𝑘𝑥 = 𝑗))
116, 9, 103bitr4i 292 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩)
1211a1i 11 . . . . . . . . . 10 (𝜑 → (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩))
13 fsumcom2.4 . . . . . . . . . 10 (𝜑 → ((𝑗𝐴𝑘𝐵) ↔ (𝑘𝐶𝑗𝐷)))
1412, 13anbi12d 747 . . . . . . . . 9 (𝜑 → ((⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐵)) ↔ (⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷))))
15142exbidv 1852 . . . . . . . 8 (𝜑 → (∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐵)) ↔ ∃𝑗𝑘(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷))))
16 eliunxp 5259 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐵)))
177, 8opelcnv 5304 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
18 eliunxp 5259 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ∃𝑘𝑗(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)))
19 excom 2042 . . . . . . . . 9 (∃𝑘𝑗(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)) ↔ ∃𝑗𝑘(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)))
2017, 18, 193bitri 286 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ∃𝑗𝑘(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)))
2115, 16, 203bitr4g 303 . . . . . . 7 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷)))
224, 5, 21eqrelrdv 5216 . . . . . 6 (𝜑 𝑗𝐴 ({𝑗} × 𝐵) = 𝑘𝐶 ({𝑘} × 𝐷))
23 nfcv 2764 . . . . . . 7 𝑚({𝑗} × 𝐵)
24 nfcv 2764 . . . . . . . 8 𝑗{𝑚}
25 nfcsb1v 3549 . . . . . . . 8 𝑗𝑚 / 𝑗𝐵
2624, 25nfxp 5142 . . . . . . 7 𝑗({𝑚} × 𝑚 / 𝑗𝐵)
27 sneq 4187 . . . . . . . 8 (𝑗 = 𝑚 → {𝑗} = {𝑚})
28 csbeq1a 3542 . . . . . . . 8 (𝑗 = 𝑚𝐵 = 𝑚 / 𝑗𝐵)
2927, 28xpeq12d 5140 . . . . . . 7 (𝑗 = 𝑚 → ({𝑗} × 𝐵) = ({𝑚} × 𝑚 / 𝑗𝐵))
3023, 26, 29cbviun 4557 . . . . . 6 𝑗𝐴 ({𝑗} × 𝐵) = 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)
31 nfcv 2764 . . . . . . . 8 𝑛({𝑘} × 𝐷)
32 nfcv 2764 . . . . . . . . 9 𝑘{𝑛}
33 nfcsb1v 3549 . . . . . . . . 9 𝑘𝑛 / 𝑘𝐷
3432, 33nfxp 5142 . . . . . . . 8 𝑘({𝑛} × 𝑛 / 𝑘𝐷)
35 sneq 4187 . . . . . . . . 9 (𝑘 = 𝑛 → {𝑘} = {𝑛})
36 csbeq1a 3542 . . . . . . . . 9 (𝑘 = 𝑛𝐷 = 𝑛 / 𝑘𝐷)
3735, 36xpeq12d 5140 . . . . . . . 8 (𝑘 = 𝑛 → ({𝑘} × 𝐷) = ({𝑛} × 𝑛 / 𝑘𝐷))
3831, 34, 37cbviun 4557 . . . . . . 7 𝑘𝐶 ({𝑘} × 𝐷) = 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)
3938cnveqi 5297 . . . . . 6 𝑘𝐶 ({𝑘} × 𝐷) = 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)
4022, 30, 393eqtr3g 2679 . . . . 5 (𝜑 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵) = 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷))
4140sumeq1d 14431 . . . 4 (𝜑 → Σ𝑧 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = Σ𝑧 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸)
42 vex 3203 . . . . . . . 8 𝑛 ∈ V
43 vex 3203 . . . . . . . 8 𝑚 ∈ V
4442, 43op1std 7178 . . . . . . 7 (𝑤 = ⟨𝑛, 𝑚⟩ → (1st𝑤) = 𝑛)
4544csbeq1d 3540 . . . . . 6 (𝑤 = ⟨𝑛, 𝑚⟩ → (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 = 𝑛 / 𝑘(2nd𝑤) / 𝑗𝐸)
4642, 43op2ndd 7179 . . . . . . . 8 (𝑤 = ⟨𝑛, 𝑚⟩ → (2nd𝑤) = 𝑚)
4746csbeq1d 3540 . . . . . . 7 (𝑤 = ⟨𝑛, 𝑚⟩ → (2nd𝑤) / 𝑗𝐸 = 𝑚 / 𝑗𝐸)
4847csbeq2dv 3992 . . . . . 6 (𝑤 = ⟨𝑛, 𝑚⟩ → 𝑛 / 𝑘(2nd𝑤) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
4945, 48eqtrd 2656 . . . . 5 (𝑤 = ⟨𝑛, 𝑚⟩ → (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
5043, 42op2ndd 7179 . . . . . . 7 (𝑧 = ⟨𝑚, 𝑛⟩ → (2nd𝑧) = 𝑛)
5150csbeq1d 3540 . . . . . 6 (𝑧 = ⟨𝑚, 𝑛⟩ → (2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = 𝑛 / 𝑘(1st𝑧) / 𝑗𝐸)
5243, 42op1std 7178 . . . . . . . 8 (𝑧 = ⟨𝑚, 𝑛⟩ → (1st𝑧) = 𝑚)
5352csbeq1d 3540 . . . . . . 7 (𝑧 = ⟨𝑚, 𝑛⟩ → (1st𝑧) / 𝑗𝐸 = 𝑚 / 𝑗𝐸)
5453csbeq2dv 3992 . . . . . 6 (𝑧 = ⟨𝑚, 𝑛⟩ → 𝑛 / 𝑘(1st𝑧) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
5551, 54eqtrd 2656 . . . . 5 (𝑧 = ⟨𝑚, 𝑛⟩ → (2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
56 fsumcom2.2 . . . . . 6 (𝜑𝐶 ∈ Fin)
57 snfi 8038 . . . . . . . 8 {𝑛} ∈ Fin
58 fsumcom2.1 . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
5958adantr 481 . . . . . . . . 9 ((𝜑𝑛𝐶) → 𝐴 ∈ Fin)
6043, 42opelcnv 5304 . . . . . . . . . . . . . . . 16 (⟨𝑚, 𝑛⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ⟨𝑛, 𝑚⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
6133, 36opeliunxp2f 7336 . . . . . . . . . . . . . . . 16 (⟨𝑛, 𝑚⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ (𝑛𝐶𝑚𝑛 / 𝑘𝐷))
6260, 61sylbbr 226 . . . . . . . . . . . . . . 15 ((𝑛𝐶𝑚𝑛 / 𝑘𝐷) → ⟨𝑚, 𝑛⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
6362adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → ⟨𝑚, 𝑛⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
6422adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑗𝐴 ({𝑗} × 𝐵) = 𝑘𝐶 ({𝑘} × 𝐷))
6563, 64eleqtrrd 2704 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → ⟨𝑚, 𝑛⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
66 eliun 4524 . . . . . . . . . . . . 13 (⟨𝑚, 𝑛⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵))
6765, 66sylib 208 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → ∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵))
68 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵))
69 opelxp 5146 . . . . . . . . . . . . . . . . 17 (⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) ↔ (𝑚 ∈ {𝑗} ∧ 𝑛𝐵))
7068, 69sylib 208 . . . . . . . . . . . . . . . 16 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → (𝑚 ∈ {𝑗} ∧ 𝑛𝐵))
7170simpld 475 . . . . . . . . . . . . . . 15 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑚 ∈ {𝑗})
72 elsni 4194 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑗} → 𝑚 = 𝑗)
7371, 72syl 17 . . . . . . . . . . . . . 14 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑚 = 𝑗)
74 simpl 473 . . . . . . . . . . . . . 14 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑗𝐴)
7573, 74eqeltrd 2701 . . . . . . . . . . . . 13 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑚𝐴)
7675rexlimiva 3028 . . . . . . . . . . . 12 (∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑚𝐴)
7767, 76syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑚𝐴)
7877expr 643 . . . . . . . . . 10 ((𝜑𝑛𝐶) → (𝑚𝑛 / 𝑘𝐷𝑚𝐴))
7978ssrdv 3609 . . . . . . . . 9 ((𝜑𝑛𝐶) → 𝑛 / 𝑘𝐷𝐴)
8059, 79ssfid 8183 . . . . . . . 8 ((𝜑𝑛𝐶) → 𝑛 / 𝑘𝐷 ∈ Fin)
81 xpfi 8231 . . . . . . . 8 (({𝑛} ∈ Fin ∧ 𝑛 / 𝑘𝐷 ∈ Fin) → ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
8257, 80, 81sylancr 695 . . . . . . 7 ((𝜑𝑛𝐶) → ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
8382ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
84 iunfi 8254 . . . . . 6 ((𝐶 ∈ Fin ∧ ∀𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin) → 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
8556, 83, 84syl2anc 693 . . . . 5 (𝜑 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
86 reliun 5239 . . . . . . 7 (Rel 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ↔ ∀𝑛𝐶 Rel ({𝑛} × 𝑛 / 𝑘𝐷))
87 relxp 5227 . . . . . . . 8 Rel ({𝑛} × 𝑛 / 𝑘𝐷)
8887a1i 11 . . . . . . 7 (𝑛𝐶 → Rel ({𝑛} × 𝑛 / 𝑘𝐷))
8986, 88mprgbir 2927 . . . . . 6 Rel 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)
9089a1i 11 . . . . 5 (𝜑 → Rel 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷))
91 simpr 477 . . . . . . . 8 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → 𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷))
92 eliun 4524 . . . . . . . 8 (𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ↔ ∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷))
9391, 92sylib 208 . . . . . . 7 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → ∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷))
94 xp2nd 7199 . . . . . . . . . 10 (𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (2nd𝑤) ∈ 𝑛 / 𝑘𝐷)
9594adantl 482 . . . . . . . . 9 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (2nd𝑤) ∈ 𝑛 / 𝑘𝐷)
96 xp1st 7198 . . . . . . . . . . . 12 (𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (1st𝑤) ∈ {𝑛})
9796adantl 482 . . . . . . . . . . 11 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) ∈ {𝑛})
98 elsni 4194 . . . . . . . . . . 11 ((1st𝑤) ∈ {𝑛} → (1st𝑤) = 𝑛)
9997, 98syl 17 . . . . . . . . . 10 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) = 𝑛)
10099csbeq1d 3540 . . . . . . . . 9 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) / 𝑘𝐷 = 𝑛 / 𝑘𝐷)
10195, 100eleqtrrd 2704 . . . . . . . 8 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (2nd𝑤) ∈ (1st𝑤) / 𝑘𝐷)
102101rexlimiva 3028 . . . . . . 7 (∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (2nd𝑤) ∈ (1st𝑤) / 𝑘𝐷)
10393, 102syl 17 . . . . . 6 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → (2nd𝑤) ∈ (1st𝑤) / 𝑘𝐷)
104 simpl 473 . . . . . . . . . 10 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → 𝑛𝐶)
10599, 104eqeltrd 2701 . . . . . . . . 9 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) ∈ 𝐶)
106105rexlimiva 3028 . . . . . . . 8 (∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (1st𝑤) ∈ 𝐶)
10793, 106syl 17 . . . . . . 7 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) ∈ 𝐶)
108 simpl 473 . . . . . . . . . 10 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝜑)
10925nfcri 2758 . . . . . . . . . . . 12 𝑗 𝑛𝑚 / 𝑗𝐵
11072equcomd 1946 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑗} → 𝑗 = 𝑚)
111110, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑚 ∈ {𝑗} → 𝐵 = 𝑚 / 𝑗𝐵)
112111eleq2d 2687 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑗} → (𝑛𝐵𝑛𝑚 / 𝑗𝐵))
113112biimpa 501 . . . . . . . . . . . . . 14 ((𝑚 ∈ {𝑗} ∧ 𝑛𝐵) → 𝑛𝑚 / 𝑗𝐵)
11469, 113sylbi 207 . . . . . . . . . . . . 13 (⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑛𝑚 / 𝑗𝐵)
115114a1i 11 . . . . . . . . . . . 12 (𝑗𝐴 → (⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑛𝑚 / 𝑗𝐵))
116109, 115rexlimi 3024 . . . . . . . . . . 11 (∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑛𝑚 / 𝑗𝐵)
11767, 116syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑛𝑚 / 𝑗𝐵)
118 fsumcom2.5 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐸 ∈ ℂ)
119118ralrimivva 2971 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗𝐴𝑘𝐵 𝐸 ∈ ℂ)
120 nfcsb1v 3549 . . . . . . . . . . . . . . . 16 𝑗𝑚 / 𝑗𝐸
121120nfel1 2779 . . . . . . . . . . . . . . 15 𝑗𝑚 / 𝑗𝐸 ∈ ℂ
12225, 121nfral 2945 . . . . . . . . . . . . . 14 𝑗𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ
123 csbeq1a 3542 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚𝐸 = 𝑚 / 𝑗𝐸)
124123eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → (𝐸 ∈ ℂ ↔ 𝑚 / 𝑗𝐸 ∈ ℂ))
12528, 124raleqbidv 3152 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (∀𝑘𝐵 𝐸 ∈ ℂ ↔ ∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ))
126122, 125rspc 3303 . . . . . . . . . . . . 13 (𝑚𝐴 → (∀𝑗𝐴𝑘𝐵 𝐸 ∈ ℂ → ∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ))
127119, 126mpan9 486 . . . . . . . . . . . 12 ((𝜑𝑚𝐴) → ∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ)
128 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝑚 / 𝑗𝐸
129128nfel1 2779 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ
130 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝑚 / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
131130eleq1d 2686 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑚 / 𝑗𝐸 ∈ ℂ ↔ 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
132129, 131rspc 3303 . . . . . . . . . . . 12 (𝑛𝑚 / 𝑗𝐵 → (∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ → 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
133127, 132syl5com 31 . . . . . . . . . . 11 ((𝜑𝑚𝐴) → (𝑛𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
134133impr 649 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝐴𝑛𝑚 / 𝑗𝐵)) → 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
135108, 77, 117, 134syl12anc 1324 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
136135ralrimivva 2971 . . . . . . . 8 (𝜑 → ∀𝑛𝐶𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
137136adantr 481 . . . . . . 7 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → ∀𝑛𝐶𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
138 csbeq1 3536 . . . . . . . . 9 (𝑛 = (1st𝑤) → 𝑛 / 𝑘𝐷 = (1st𝑤) / 𝑘𝐷)
139 csbeq1 3536 . . . . . . . . . 10 (𝑛 = (1st𝑤) → 𝑛 / 𝑘𝑚 / 𝑗𝐸 = (1st𝑤) / 𝑘𝑚 / 𝑗𝐸)
140139eleq1d 2686 . . . . . . . . 9 (𝑛 = (1st𝑤) → (𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ ↔ (1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
141138, 140raleqbidv 3152 . . . . . . . 8 (𝑛 = (1st𝑤) → (∀𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ ↔ ∀𝑚 (1st𝑤) / 𝑘𝐷(1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
142141rspcv 3305 . . . . . . 7 ((1st𝑤) ∈ 𝐶 → (∀𝑛𝐶𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ → ∀𝑚 (1st𝑤) / 𝑘𝐷(1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
143107, 137, 142sylc 65 . . . . . 6 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → ∀𝑚 (1st𝑤) / 𝑘𝐷(1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
144 csbeq1 3536 . . . . . . . . 9 (𝑚 = (2nd𝑤) → 𝑚 / 𝑗𝐸 = (2nd𝑤) / 𝑗𝐸)
145144csbeq2dv 3992 . . . . . . . 8 (𝑚 = (2nd𝑤) → (1st𝑤) / 𝑘𝑚 / 𝑗𝐸 = (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸)
146145eleq1d 2686 . . . . . . 7 (𝑚 = (2nd𝑤) → ((1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ ↔ (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 ∈ ℂ))
147146rspcv 3305 . . . . . 6 ((2nd𝑤) ∈ (1st𝑤) / 𝑘𝐷 → (∀𝑚 (1st𝑤) / 𝑘𝐷(1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ → (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 ∈ ℂ))
148103, 143, 147sylc 65 . . . . 5 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 ∈ ℂ)
14949, 55, 85, 90, 148fsumcnv 14504 . . . 4 (𝜑 → Σ𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 = Σ𝑧 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸)
15041, 149eqtr4d 2659 . . 3 (𝜑 → Σ𝑧 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = Σ𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸)
151 fsumcom2.3 . . . . . 6 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
152151ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑗𝐴 𝐵 ∈ Fin)
15325nfel1 2779 . . . . . 6 𝑗𝑚 / 𝑗𝐵 ∈ Fin
15428eleq1d 2686 . . . . . 6 (𝑗 = 𝑚 → (𝐵 ∈ Fin ↔ 𝑚 / 𝑗𝐵 ∈ Fin))
155153, 154rspc 3303 . . . . 5 (𝑚𝐴 → (∀𝑗𝐴 𝐵 ∈ Fin → 𝑚 / 𝑗𝐵 ∈ Fin))
156152, 155mpan9 486 . . . 4 ((𝜑𝑚𝐴) → 𝑚 / 𝑗𝐵 ∈ Fin)
15755, 58, 156, 134fsum2d 14502 . . 3 (𝜑 → Σ𝑚𝐴 Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸 = Σ𝑧 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸)
15849, 56, 80, 135fsum2d 14502 . . 3 (𝜑 → Σ𝑛𝐶 Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 = Σ𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸)
159150, 157, 1583eqtr4d 2666 . 2 (𝜑 → Σ𝑚𝐴 Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸 = Σ𝑛𝐶 Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸)
160 nfcv 2764 . . 3 𝑚Σ𝑘𝐵 𝐸
161 nfcv 2764 . . . . 5 𝑗𝑛
162161, 120nfcsb 3551 . . . 4 𝑗𝑛 / 𝑘𝑚 / 𝑗𝐸
16325, 162nfsum 14421 . . 3 𝑗Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸
164 nfcv 2764 . . . . 5 𝑛𝐸
165 nfcsb1v 3549 . . . . 5 𝑘𝑛 / 𝑘𝐸
166 csbeq1a 3542 . . . . 5 (𝑘 = 𝑛𝐸 = 𝑛 / 𝑘𝐸)
167164, 165, 166cbvsumi 14427 . . . 4 Σ𝑘𝐵 𝐸 = Σ𝑛𝐵 𝑛 / 𝑘𝐸
168123csbeq2dv 3992 . . . . . 6 (𝑗 = 𝑚𝑛 / 𝑘𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
169168adantr 481 . . . . 5 ((𝑗 = 𝑚𝑛𝐵) → 𝑛 / 𝑘𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
17028, 169sumeq12dv 14437 . . . 4 (𝑗 = 𝑚 → Σ𝑛𝐵 𝑛 / 𝑘𝐸 = Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸)
171167, 170syl5eq 2668 . . 3 (𝑗 = 𝑚 → Σ𝑘𝐵 𝐸 = Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸)
172160, 163, 171cbvsumi 14427 . 2 Σ𝑗𝐴 Σ𝑘𝐵 𝐸 = Σ𝑚𝐴 Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸
173 nfcv 2764 . . 3 𝑛Σ𝑗𝐷 𝐸
17433, 128nfsum 14421 . . 3 𝑘Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸
175 nfcv 2764 . . . . 5 𝑚𝐸
176175, 120, 123cbvsumi 14427 . . . 4 Σ𝑗𝐷 𝐸 = Σ𝑚𝐷 𝑚 / 𝑗𝐸
177130adantr 481 . . . . 5 ((𝑘 = 𝑛𝑚𝐷) → 𝑚 / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
17836, 177sumeq12dv 14437 . . . 4 (𝑘 = 𝑛 → Σ𝑚𝐷 𝑚 / 𝑗𝐸 = Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸)
179176, 178syl5eq 2668 . . 3 (𝑘 = 𝑛 → Σ𝑗𝐷 𝐸 = Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸)
180173, 174, 179cbvsumi 14427 . 2 Σ𝑘𝐶 Σ𝑗𝐷 𝐸 = Σ𝑛𝐶 Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸
181159, 172, 1803eqtr4g 2681 1 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐸 = Σ𝑘𝐶 Σ𝑗𝐷 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  csb 3533  {csn 4177  cop 4183   ciun 4520   × cxp 5112  ccnv 5113  Rel wrel 5119  cfv 5888  1st c1st 7166  2nd c2nd 7167  Fincfn 7955  cc 9934  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  fsumcom  14507  fsum0diag  14509  fsumdvdsdiag  24910  dvdsflsumcom  24914  fsumfldivdiag  24916  logfac2  24942  chpchtsum  24944  logfaclbnd  24947  dchrisum0lem1  25205
  Copyright terms: Public domain W3C validator