Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon3b Structured version   Visualization version   GIF version

Theorem opltcon3b 34491
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 28362 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b 𝐵 = (Base‘𝐾)
opltcon3.s < = (lt‘𝐾)
opltcon3.o = (oc‘𝐾)
Assertion
Ref Expression
opltcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ( 𝑌) < ( 𝑋)))

Proof of Theorem opltcon3b
StepHypRef Expression
1 opltcon3.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2622 . . . 4 (le‘𝐾) = (le‘𝐾)
3 opltcon3.o . . . 4 = (oc‘𝐾)
41, 2, 3oplecon3b 34487 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ ( 𝑌)(le‘𝐾)( 𝑋)))
51, 2, 3oplecon3b 34487 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( 𝑌)))
653com23 1271 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)𝑋 ↔ ( 𝑋)(le‘𝐾)( 𝑌)))
76notbid 308 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌(le‘𝐾)𝑋 ↔ ¬ ( 𝑋)(le‘𝐾)( 𝑌)))
84, 7anbi12d 747 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
9 opposet 34468 . . 3 (𝐾 ∈ OP → 𝐾 ∈ Poset)
10 opltcon3.s . . . 4 < = (lt‘𝐾)
111, 2, 10pltval3 16967 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋)))
129, 11syl3an1 1359 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ ¬ 𝑌(le‘𝐾)𝑋)))
1393ad2ant1 1082 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
141, 3opoccl 34481 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
15143adant2 1080 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
161, 3opoccl 34481 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
17163adant3 1081 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
181, 2, 10pltval3 16967 . . 3 ((𝐾 ∈ Poset ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌) < ( 𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
1913, 15, 17, 18syl3anc 1326 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) < ( 𝑋) ↔ (( 𝑌)(le‘𝐾)( 𝑋) ∧ ¬ ( 𝑋)(le‘𝐾)( 𝑌))))
208, 12, 193bitr4d 300 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ( 𝑌) < ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  occoc 15949  Posetcpo 16940  ltcplt 16941  OPcops 34459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-preset 16928  df-poset 16946  df-plt 16958  df-oposet 34463
This theorem is referenced by:  opltcon1b  34492  opltcon2b  34493  cvrcon3b  34564  1cvratex  34759  lhprelat3N  35326
  Copyright terms: Public domain W3C validator