Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddvaln0N Structured version   Visualization version   GIF version

Theorem paddvaln0N 35087
Description: Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddvaln0N (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)})
Distinct variable groups:   𝐴,𝑝,𝑞,𝑟   𝐾,𝑝   𝑟,𝑞,𝐾   𝑋,𝑝,𝑞   𝑌,𝑝,𝑞,𝑟   ,𝑝   ,𝑝   𝐴,𝑞,𝑟   ,𝑞,𝑟   ,𝑞,𝑟   𝑋,𝑟
Allowed substitution hints:   + (𝑟,𝑞,𝑝)

Proof of Theorem paddvaln0N
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpaddn0 35086 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑠 ∈ (𝑋 + 𝑌) ↔ (𝑠𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑠 (𝑞 𝑟))))
6 breq1 4656 . . . . 5 (𝑝 = 𝑠 → (𝑝 (𝑞 𝑟) ↔ 𝑠 (𝑞 𝑟)))
762rexbidv 3057 . . . 4 (𝑝 = 𝑠 → (∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑠 (𝑞 𝑟)))
87elrab 3363 . . 3 (𝑠 ∈ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ↔ (𝑠𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑠 (𝑞 𝑟)))
95, 8syl6bbr 278 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑠 ∈ (𝑋 + 𝑌) ↔ 𝑠 ∈ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
109eqrdv 2620 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Latclat 17045  Atomscatm 34550  +𝑃cpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lub 16974  df-join 16976  df-lat 17046  df-ats 34554  df-padd 35082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator