Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddvaln0N Structured version   Visualization version   Unicode version

Theorem paddvaln0N 35087
Description: Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddfval.l  |-  .<_  =  ( le `  K )
paddfval.j  |-  .\/  =  ( join `  K )
paddfval.a  |-  A  =  ( Atoms `  K )
paddfval.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddvaln0N  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( X  .+  Y
)  =  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
) } )
Distinct variable groups:    A, p, q, r    K, p    r,
q, K    X, p, q    Y, p, q, r    .\/ , p    .<_ , p    A, q, r    .\/ , q, r    .<_ , q, r    X, r
Allowed substitution hints:    .+ ( r, q, p)

Proof of Theorem paddvaln0N
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 paddfval.l . . . 4  |-  .<_  =  ( le `  K )
2 paddfval.j . . . 4  |-  .\/  =  ( join `  K )
3 paddfval.a . . . 4  |-  A  =  ( Atoms `  K )
4 paddfval.p . . . 4  |-  .+  =  ( +P `  K
)
51, 2, 3, 4elpaddn0 35086 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( s  e.  ( X  .+  Y )  <-> 
( s  e.  A  /\  E. q  e.  X  E. r  e.  Y  s  .<_  ( q  .\/  r ) ) ) )
6 breq1 4656 . . . . 5  |-  ( p  =  s  ->  (
p  .<_  ( q  .\/  r )  <->  s  .<_  ( q  .\/  r ) ) )
762rexbidv 3057 . . . 4  |-  ( p  =  s  ->  ( E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r )  <->  E. q  e.  X  E. r  e.  Y  s  .<_  ( q  .\/  r ) ) )
87elrab 3363 . . 3  |-  ( s  e.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) }  <->  ( s  e.  A  /\  E. q  e.  X  E. r  e.  Y  s  .<_  ( q  .\/  r ) ) )
95, 8syl6bbr 278 . 2  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( s  e.  ( X  .+  Y )  <-> 
s  e.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
) } ) )
109eqrdv 2620 1  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( X  .+  Y
)  =  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lub 16974  df-join 16976  df-lat 17046  df-ats 34554  df-padd 35082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator