Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidALTN Structured version   Visualization version   GIF version

Theorem pexmidALTN 35264
Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N 35239. Lemma 3.3(2) in [Holland95] p. 215. In our proof, we use the variables 𝑋, 𝑀, 𝑝, 𝑞, 𝑟 in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidALTN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidALTN
StepHypRef Expression
1 id 22 . . . 4 (𝑋 = ∅ → 𝑋 = ∅)
2 fveq2 6191 . . . 4 (𝑋 = ∅ → ( 𝑋) = ( ‘∅))
31, 2oveq12d 6668 . . 3 (𝑋 = ∅ → (𝑋 + ( 𝑋)) = (∅ + ( ‘∅)))
4 pexmidALT.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . . 8 = (⊥𝑃𝐾)
64, 5pol0N 35195 . . . . . . 7 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
7 eqimss 3657 . . . . . . 7 (( ‘∅) = 𝐴 → ( ‘∅) ⊆ 𝐴)
86, 7syl 17 . . . . . 6 (𝐾 ∈ HL → ( ‘∅) ⊆ 𝐴)
9 pexmidALT.p . . . . . . 7 + = (+𝑃𝐾)
104, 9padd02 35098 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘∅) ⊆ 𝐴) → (∅ + ( ‘∅)) = ( ‘∅))
118, 10mpdan 702 . . . . 5 (𝐾 ∈ HL → (∅ + ( ‘∅)) = ( ‘∅))
1211, 6eqtrd 2656 . . . 4 (𝐾 ∈ HL → (∅ + ( ‘∅)) = 𝐴)
1312ad2antrr 762 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (∅ + ( ‘∅)) = 𝐴)
143, 13sylan9eqr 2678 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 = ∅) → (𝑋 + ( 𝑋)) = 𝐴)
154, 9, 5pexmidlem8N 35263 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
1615anassrs 680 . 2 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) ∧ 𝑋 ≠ ∅) → (𝑋 + ( 𝑋)) = 𝐴)
1714, 16pm2.61dane 2881 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  Atomscatm 34550  HLchlt 34637  +𝑃cpadd 35081  𝑃cpolN 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-polarityN 35189  df-psubclN 35221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator