![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj1val | Structured version Visualization version GIF version |
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
pj1fval.v | ⊢ 𝐵 = (Base‘𝐺) |
pj1fval.a | ⊢ + = (+g‘𝐺) |
pj1fval.s | ⊢ ⊕ = (LSSum‘𝐺) |
pj1fval.p | ⊢ 𝑃 = (proj1‘𝐺) |
Ref | Expression |
---|---|
pj1val | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1fval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | pj1fval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
3 | pj1fval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | pj1fval.p | . . . 4 ⊢ 𝑃 = (proj1‘𝐺) | |
5 | 1, 2, 3, 4 | pj1fval 18107 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |
6 | 5 | adantr 481 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 ⊕ 𝑈) ↦ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)))) |
7 | simpr 477 | . . . . 5 ⊢ ((((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) ∧ 𝑧 = 𝑋) → 𝑧 = 𝑋) | |
8 | 7 | eqeq1d 2624 | . . . 4 ⊢ ((((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) ∧ 𝑧 = 𝑋) → (𝑧 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑥 + 𝑦))) |
9 | 8 | rexbidv 3052 | . . 3 ⊢ ((((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) ∧ 𝑧 = 𝑋) → (∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) |
10 | 9 | riotabidv 6613 | . 2 ⊢ ((((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) ∧ 𝑧 = 𝑋) → (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑧 = (𝑥 + 𝑦)) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) |
11 | simpr 477 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → 𝑋 ∈ (𝑇 ⊕ 𝑈)) | |
12 | riotaex 6615 | . . 3 ⊢ (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V | |
13 | 12 | a1i 11 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V) |
14 | 6, 10, 11, 13 | fvmptd 6288 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑋 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (℩𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 𝑋 = (𝑥 + 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 ↦ cmpt 4729 ‘cfv 5888 ℩crio 6610 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 LSSumclsm 18049 proj1cpj1 18050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-pj1 18052 |
This theorem is referenced by: pj1id 18112 |
Copyright terms: Public domain | W3C validator |