MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1eu Structured version   Visualization version   GIF version

Theorem pj1eu 18109
Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
pj1eu ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦, +   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pj1eu
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pj1eu.a . . . . 5 + = (+g𝐺)
4 pj1eu.s . . . . 5 = (LSSum‘𝐺)
53, 4lsmelval 18064 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
61, 2, 5syl2anc 693 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
76biimpa 501 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
8 reeanv 3107 . . . . 5 (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) ↔ (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
9 eqtr2 2642 . . . . . . 7 ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → (𝑥 + 𝑦) = (𝑢 + 𝑣))
10 pj1eu.o . . . . . . . . 9 0 = (0g𝐺)
11 pj1eu.z . . . . . . . . 9 𝑍 = (Cntz‘𝐺)
121ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
132ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
14 pj1eu.4 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) = { 0 })
1514ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → (𝑇𝑈) = { 0 })
16 pj1eu.5 . . . . . . . . . 10 (𝜑𝑇 ⊆ (𝑍𝑈))
1716ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ⊆ (𝑍𝑈))
18 simplrl 800 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑥𝑇)
19 simplrr 801 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑢𝑇)
20 simprl 794 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑦𝑈)
21 simprr 796 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑣𝑈)
223, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21subgdisjb 18106 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) ↔ (𝑥 = 𝑢𝑦 = 𝑣)))
23 simpl 473 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
2422, 23syl6bi 243 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) → 𝑥 = 𝑢))
259, 24syl5 34 . . . . . 6 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2625rexlimdvva 3038 . . . . 5 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
278, 26syl5bir 233 . . . 4 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2827ralrimivva 2971 . . 3 (𝜑 → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2928adantr 481 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
30 oveq1 6657 . . . . . 6 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3130eqeq2d 2632 . . . . 5 (𝑥 = 𝑢 → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑦)))
3231rexbidv 3052 . . . 4 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑢 + 𝑦)))
33 oveq2 6658 . . . . . 6 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eqeq2d 2632 . . . . 5 (𝑦 = 𝑣 → (𝑋 = (𝑢 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑣)))
3534cbvrexv 3172 . . . 4 (∃𝑦𝑈 𝑋 = (𝑢 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣))
3632, 35syl6bb 276 . . 3 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
3736reu4 3400 . 2 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ (∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢)))
387, 29, 37sylanbrc 698 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914  cin 3573  wss 3574  {csn 4177  cfv 5888  (class class class)co 6650  +gcplusg 15941  0gc0g 16100  SubGrpcsubg 17588  Cntzccntz 17748  LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051
This theorem is referenced by:  pj1f  18110  pj1id  18112
  Copyright terms: Public domain W3C validator