MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1val Structured version   Visualization version   Unicode version

Theorem pj1val 18108
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v  |-  B  =  ( Base `  G
)
pj1fval.a  |-  .+  =  ( +g  `  G )
pj1fval.s  |-  .(+)  =  (
LSSum `  G )
pj1fval.p  |-  P  =  ( proj1 `  G )
Assertion
Ref Expression
pj1val  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  X  e.  ( T  .(+) 
U ) )  -> 
( ( T P U ) `  X
)  =  ( iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) ) )
Distinct variable groups:    x, y, B    x, T, y    x, U, y    x,  .(+) , y    x, G, y    x, V, y   
x, X, y
Allowed substitution hints:    P( x, y)    .+ ( x, y)

Proof of Theorem pj1val
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pj1fval.v . . . 4  |-  B  =  ( Base `  G
)
2 pj1fval.a . . . 4  |-  .+  =  ( +g  `  G )
3 pj1fval.s . . . 4  |-  .(+)  =  (
LSSum `  G )
4 pj1fval.p . . . 4  |-  P  =  ( proj1 `  G )
51, 2, 3, 4pj1fval 18107 . . 3  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  ( T P U )  =  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) )
65adantr 481 . 2  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  X  e.  ( T  .(+) 
U ) )  -> 
( T P U )  =  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) )
7 simpr 477 . . . . 5  |-  ( ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B
)  /\  X  e.  ( T  .(+)  U ) )  /\  z  =  X )  ->  z  =  X )
87eqeq1d 2624 . . . 4  |-  ( ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B
)  /\  X  e.  ( T  .(+)  U ) )  /\  z  =  X )  ->  (
z  =  ( x 
.+  y )  <->  X  =  ( x  .+  y ) ) )
98rexbidv 3052 . . 3  |-  ( ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B
)  /\  X  e.  ( T  .(+)  U ) )  /\  z  =  X )  ->  ( E. y  e.  U  z  =  ( x  .+  y )  <->  E. y  e.  U  X  =  ( x  .+  y ) ) )
109riotabidv 6613 . 2  |-  ( ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B
)  /\  X  e.  ( T  .(+)  U ) )  /\  z  =  X )  ->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) )  =  ( iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) ) )
11 simpr 477 . 2  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  X  e.  ( T  .(+) 
U ) )  ->  X  e.  ( T  .(+) 
U ) )
12 riotaex 6615 . . 3  |-  ( iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) )  e.  _V
1312a1i 11 . 2  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  X  e.  ( T  .(+) 
U ) )  -> 
( iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) )  e. 
_V )
146, 10, 11, 13fvmptd 6288 1  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  X  e.  ( T  .(+) 
U ) )  -> 
( ( T P U ) `  X
)  =  ( iota_ x  e.  T  E. y  e.  U  X  =  ( x  .+  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   LSSumclsm 18049   proj1cpj1 18050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-pj1 18052
This theorem is referenced by:  pj1id  18112
  Copyright terms: Public domain W3C validator