Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem2N Structured version   Visualization version   GIF version

Theorem pl42lem2N 35266
Description: Lemma for pl42N 35269. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem2N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))

Proof of Theorem pl42lem2N
StepHypRef Expression
1 simpl1 1064 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ HL)
2 hllat 34650 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝐾 ∈ Lat)
4 simpl2 1065 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑋𝐵)
5 simpl3 1066 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑌𝐵)
6 pl42lem.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 pl42lem.j . . . . . . 7 = (join‘𝐾)
86, 7latjcl 17051 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑌) ∈ 𝐵)
10 eqid 2622 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
11 pl42lem.f . . . . . 6 𝐹 = (pmap‘𝐾)
126, 10, 11pmapssat 35045 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
131, 9, 12syl2anc 693 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾))
14 simpr2 1068 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑊𝐵)
156, 7latjcl 17051 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
163, 4, 14, 15syl3anc 1326 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑋 𝑊) ∈ 𝐵)
17 simpr3 1069 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → 𝑉𝐵)
186, 7latjcl 17051 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → (𝑌 𝑉) ∈ 𝐵)
193, 5, 17, 18syl3anc 1326 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝑌 𝑉) ∈ 𝐵)
20 pl42lem.m . . . . . . 7 = (meet‘𝐾)
216, 20latmcl 17052 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
223, 16, 19, 21syl3anc 1326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵)
236, 10, 11pmapssat 35045 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
241, 22, 23syl2anc 693 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾))
251, 13, 243jca 1242 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)))
26 pl42lem.p . . . . . 6 + = (+𝑃𝐾)
276, 7, 11, 26pmapjoin 35138 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
283, 4, 5, 27syl3anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)))
296, 7, 11, 26pmapjoin 35138 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
303, 4, 14, 29syl3anc 1326 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)))
316, 7, 11, 26pmapjoin 35138 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
323, 5, 17, 31syl3anc 1326 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉)))
33 ss2in 3840 . . . . . 6 ((((𝐹𝑋) + (𝐹𝑊)) ⊆ (𝐹‘(𝑋 𝑊)) ∧ ((𝐹𝑌) + (𝐹𝑉)) ⊆ (𝐹‘(𝑌 𝑉))) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3430, 32, 33syl2anc 693 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
356, 20, 10, 11pmapmeet 35059 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 𝑊) ∈ 𝐵 ∧ (𝑌 𝑉) ∈ 𝐵) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
361, 16, 19, 35syl3anc 1326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) = ((𝐹‘(𝑋 𝑊)) ∩ (𝐹‘(𝑌 𝑉))))
3734, 36sseqtr4d 3642 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))
3828, 37jca 554 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
3910, 26paddss12 35105 . . 3 ((𝐾 ∈ HL ∧ (𝐹‘(𝑋 𝑌)) ⊆ (Atoms‘𝐾) ∧ (𝐹‘((𝑋 𝑊) (𝑌 𝑉))) ⊆ (Atoms‘𝐾)) → ((((𝐹𝑋) + (𝐹𝑌)) ⊆ (𝐹‘(𝑋 𝑌)) ∧ (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉))) ⊆ (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉))))))
4025, 38, 39sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))))
416, 7, 11, 26pmapjoin 35138 . . 3 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ ((𝑋 𝑊) (𝑌 𝑉)) ∈ 𝐵) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
423, 9, 22, 41syl3anc 1326 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝐹‘(𝑋 𝑌)) + (𝐹‘((𝑋 𝑊) (𝑌 𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
4340, 42sstrd 3613 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → (((𝐹𝑋) + (𝐹𝑌)) + (((𝐹𝑋) + (𝐹𝑊)) ∩ ((𝐹𝑌) + (𝐹𝑉)))) ⊆ (𝐹‘((𝑋 𝑌) ((𝑋 𝑊) (𝑌 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  occoc 15949  joincjn 16944  meetcmee 16945  Latclat 17045  Atomscatm 34550  HLchlt 34637  pmapcpmap 34783  +𝑃cpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-clat 17108  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-pmap 34790  df-padd 35082
This theorem is referenced by:  pl42lem4N  35268
  Copyright terms: Public domain W3C validator