MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Visualization version   Unicode version

Theorem ply1val 19564
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1  |-  P  =  (Poly1 `  R )
ply1val.2  |-  S  =  (PwSer1 `  R )
Assertion
Ref Expression
ply1val  |-  P  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) )

Proof of Theorem ply1val
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2  |-  P  =  (Poly1 `  R )
2 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  (PwSer1 `  r )  =  (PwSer1 `  R ) )
3 ply1val.2 . . . . . 6  |-  S  =  (PwSer1 `  R )
42, 3syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  (PwSer1 `  r )  =  S )
5 oveq2 6658 . . . . . 6  |-  ( r  =  R  ->  ( 1o mPoly  r )  =  ( 1o mPoly  R ) )
65fveq2d 6195 . . . . 5  |-  ( r  =  R  ->  ( Base `  ( 1o mPoly  r
) )  =  (
Base `  ( 1o mPoly  R ) ) )
74, 6oveq12d 6668 . . . 4  |-  ( r  =  R  ->  (
(PwSer1 `
 r )s  ( Base `  ( 1o mPoly  r )
) )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
8 df-ply1 19552 . . . 4  |- Poly1  =  (
r  e.  _V  |->  ( (PwSer1 `  r )s  ( Base `  ( 1o mPoly  r )
) ) )
9 ovex 6678 . . . 4  |-  ( Ss  (
Base `  ( 1o mPoly  R ) ) )  e. 
_V
107, 8, 9fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  (Poly1 `  R )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
11 fvprc 6185 . . . . 5  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  (/) )
12 ress0 15934 . . . . 5  |-  ( (/)s  ( Base `  ( 1o mPoly  R )
) )  =  (/)
1311, 12syl6eqr 2674 . . . 4  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  (
(/)s 
( Base `  ( 1o mPoly  R ) ) ) )
14 fvprc 6185 . . . . . 6  |-  ( -.  R  e.  _V  ->  (PwSer1 `  R )  =  (/) )
153, 14syl5eq 2668 . . . . 5  |-  ( -.  R  e.  _V  ->  S  =  (/) )
1615oveq1d 6665 . . . 4  |-  ( -.  R  e.  _V  ->  ( Ss  ( Base `  ( 1o mPoly  R ) ) )  =  ( (/)s  ( Base `  ( 1o mPoly  R ) ) ) )
1713, 16eqtr4d 2659 . . 3  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
1810, 17pm2.61i 176 . 2  |-  (Poly1 `  R
)  =  ( Ss  (
Base `  ( 1o mPoly  R ) ) )
191, 18eqtri 2644 1  |-  P  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   1oc1o 7553   Basecbs 15857   ↾s cress 15858   mPoly cmpl 19353  PwSer1cps1 19545  Poly1cpl1 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-slot 15861  df-base 15863  df-ress 15865  df-ply1 19552
This theorem is referenced by:  ply1bas  19565  ply1crng  19568  ply1assa  19569  ply1bascl  19573  ply1plusg  19595  ply1vsca  19596  ply1mulr  19597  ply1ring  19618  ply1lmod  19622  ply1sca  19623
  Copyright terms: Public domain W3C validator