MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem13 Structured version   Visualization version   GIF version

Theorem axlowdimlem13 25834
Description: Lemma for axlowdim 25841. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem13.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem13.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem13 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)

Proof of Theorem axlowdimlem13
StepHypRef Expression
1 2ne0 11113 . . . . . . . . 9 2 ≠ 0
21neii 2796 . . . . . . . 8 ¬ 2 = 0
3 eqcom 2629 . . . . . . . . 9 (2 = 0 ↔ 0 = 2)
4 1pneg1e0 11129 . . . . . . . . . . 11 (1 + -1) = 0
54eqcomi 2631 . . . . . . . . . 10 0 = (1 + -1)
6 df-2 11079 . . . . . . . . . 10 2 = (1 + 1)
75, 6eqeq12i 2636 . . . . . . . . 9 (0 = 2 ↔ (1 + -1) = (1 + 1))
8 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
9 neg1cn 11124 . . . . . . . . . 10 -1 ∈ ℂ
108, 9, 8addcani 10229 . . . . . . . . 9 ((1 + -1) = (1 + 1) ↔ -1 = 1)
113, 7, 103bitri 286 . . . . . . . 8 (2 = 0 ↔ -1 = 1)
122, 11mtbi 312 . . . . . . 7 ¬ -1 = 1
1312intnanr 961 . . . . . 6 ¬ (-1 = 1 ∧ 0 = 0)
14 ax-1ne0 10005 . . . . . . . . 9 1 ≠ 0
1514neii 2796 . . . . . . . 8 ¬ 1 = 0
16 negeq0 10335 . . . . . . . . 9 (1 ∈ ℂ → (1 = 0 ↔ -1 = 0))
178, 16ax-mp 5 . . . . . . . 8 (1 = 0 ↔ -1 = 0)
1815, 17mtbi 312 . . . . . . 7 ¬ -1 = 0
1918intnanr 961 . . . . . 6 ¬ (-1 = 0 ∧ 0 = 1)
2013, 19pm3.2ni 899 . . . . 5 ¬ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1))
21 negex 10279 . . . . . 6 -1 ∈ V
22 c0ex 10034 . . . . . 6 0 ∈ V
23 1ex 10035 . . . . . 6 1 ∈ V
2421, 22, 23, 22preq12b 4382 . . . . 5 ({-1, 0} = {1, 0} ↔ ((-1 = 1 ∧ 0 = 0) ∨ (-1 = 0 ∧ 0 = 1)))
2520, 24mtbir 313 . . . 4 ¬ {-1, 0} = {1, 0}
26 3ex 11096 . . . . . . . . 9 3 ∈ V
2726rnsnop 5616 . . . . . . . 8 ran {⟨3, -1⟩} = {-1}
2827a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨3, -1⟩} = {-1})
29 elnnuz 11724 . . . . . . . . . . . 12 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
30 eluzfz1 12348 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
3129, 30sylbi 207 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
32 df-3 11080 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
33 1e0p1 11552 . . . . . . . . . . . . . . . 16 1 = (0 + 1)
3432, 33eqeq12i 2636 . . . . . . . . . . . . . . 15 (3 = 1 ↔ (2 + 1) = (0 + 1))
35 2cn 11091 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
36 0cn 10032 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
3735, 36, 8addcan2i 10230 . . . . . . . . . . . . . . 15 ((2 + 1) = (0 + 1) ↔ 2 = 0)
3834, 37bitri 264 . . . . . . . . . . . . . 14 (3 = 1 ↔ 2 = 0)
3938necon3bii 2846 . . . . . . . . . . . . 13 (3 ≠ 1 ↔ 2 ≠ 0)
401, 39mpbir 221 . . . . . . . . . . . 12 3 ≠ 1
4140necomi 2848 . . . . . . . . . . 11 1 ≠ 3
4231, 41jctir 561 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
43 eldifsn 4317 . . . . . . . . . 10 (1 ∈ ((1...𝑁) ∖ {3}) ↔ (1 ∈ (1...𝑁) ∧ 1 ≠ 3))
4442, 43sylibr 224 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ((1...𝑁) ∖ {3}))
4544adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 1 ∈ ((1...𝑁) ∖ {3}))
46 ne0i 3921 . . . . . . . 8 (1 ∈ ((1...𝑁) ∖ {3}) → ((1...𝑁) ∖ {3}) ≠ ∅)
47 rnxp 5564 . . . . . . . 8 (((1...𝑁) ∖ {3}) ≠ ∅ → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4845, 46, 473syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {3}) × {0}) = {0})
4928, 48uneq12d 3768 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0})) = ({-1} ∪ {0}))
50 rnun 5541 . . . . . 6 ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = (ran {⟨3, -1⟩} ∪ ran (((1...𝑁) ∖ {3}) × {0}))
51 df-pr 4180 . . . . . 6 {-1, 0} = ({-1} ∪ {0})
5249, 50, 513eqtr4g 2681 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = {-1, 0})
53 ovex 6678 . . . . . . . . 9 (𝐼 + 1) ∈ V
5453rnsnop 5616 . . . . . . . 8 ran {⟨(𝐼 + 1), 1⟩} = {1}
5554a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran {⟨(𝐼 + 1), 1⟩} = {1})
56 nnz 11399 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
57 fzssp1 12384 . . . . . . . . . . . 12 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
58 zcn 11382 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
59 npcan1 10455 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
6059oveq2d 6666 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6158, 60syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
6257, 61syl5sseq 3653 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6356, 62syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
6463sselda 3603 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ (1...𝑁))
65 elfzelz 12342 . . . . . . . . . . . 12 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℤ)
6665zred 11482 . . . . . . . . . . 11 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ∈ ℝ)
67 id 22 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
68 ltp1 10861 . . . . . . . . . . . 12 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
6967, 68ltned 10173 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ≠ (𝐼 + 1))
7066, 69syl 17 . . . . . . . . . 10 (𝐼 ∈ (1...(𝑁 − 1)) → 𝐼 ≠ (𝐼 + 1))
7170adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ≠ (𝐼 + 1))
72 eldifsn 4317 . . . . . . . . 9 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐼 ∈ (1...𝑁) ∧ 𝐼 ≠ (𝐼 + 1)))
7364, 71, 72sylanbrc 698 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))
74 ne0i 3921 . . . . . . . 8 (𝐼 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅)
75 rnxp 5564 . . . . . . . 8 (((1...𝑁) ∖ {(𝐼 + 1)}) ≠ ∅ → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7673, 74, 753syl 18 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) = {0})
7755, 76uneq12d 3768 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = ({1} ∪ {0}))
78 rnun 5541 . . . . . 6 ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = (ran {⟨(𝐼 + 1), 1⟩} ∪ ran (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
79 df-pr 4180 . . . . . 6 {1, 0} = ({1} ∪ {0})
8077, 78, 793eqtr4g 2681 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) = {1, 0})
8152, 80eqeq12d 2637 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ↔ {-1, 0} = {1, 0}))
8225, 81mtbiri 317 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
83 rneq 5351 . . 3 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) → ran ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ran ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8482, 83nsyl 135 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
85 axlowdimlem13.1 . . . 4 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
86 axlowdimlem13.2 . . . 4 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
8785, 86eqeq12i 2636 . . 3 (𝑃 = 𝑄 ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8887necon3abii 2840 . 2 (𝑃𝑄 ↔ ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})))
8984, 88sylibr 224 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177  {cpr 4179  cop 4183   × cxp 5112  ran crn 5115  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  -cneg 10267  cn 11020  2c2 11070  3c3 11071  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  axlowdimlem15  25836
  Copyright terms: Public domain W3C validator