Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem4 Structured version   Visualization version   GIF version

Theorem clsk1indlem4 38342
Description: The ansatz closure function (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) has the K4 property of idempotence. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
Assertion
Ref Expression
clsk1indlem4 𝑠 ∈ 𝒫 3𝑜(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem4
StepHypRef Expression
1 tpex 6957 . . . . . . . . . 10 {∅, 1𝑜, 2𝑜} ∈ V
21a1i 11 . . . . . . . . 9 (⊤ → {∅, 1𝑜, 2𝑜} ∈ V)
3 snsstp1 4347 . . . . . . . . . . . 12 {∅} ⊆ {∅, 1𝑜, 2𝑜}
43a1i 11 . . . . . . . . . . 11 (⊤ → {∅} ⊆ {∅, 1𝑜, 2𝑜})
5 0ex 4790 . . . . . . . . . . . 12 ∅ ∈ V
65snss 4316 . . . . . . . . . . 11 (∅ ∈ {∅, 1𝑜, 2𝑜} ↔ {∅} ⊆ {∅, 1𝑜, 2𝑜})
74, 6sylibr 224 . . . . . . . . . 10 (⊤ → ∅ ∈ {∅, 1𝑜, 2𝑜})
8 snsstp2 4348 . . . . . . . . . . . 12 {1𝑜} ⊆ {∅, 1𝑜, 2𝑜}
98a1i 11 . . . . . . . . . . 11 (⊤ → {1𝑜} ⊆ {∅, 1𝑜, 2𝑜})
10 1on 7567 . . . . . . . . . . . . 13 1𝑜 ∈ On
1110elexi 3213 . . . . . . . . . . . 12 1𝑜 ∈ V
1211snss 4316 . . . . . . . . . . 11 (1𝑜 ∈ {∅, 1𝑜, 2𝑜} ↔ {1𝑜} ⊆ {∅, 1𝑜, 2𝑜})
139, 12sylibr 224 . . . . . . . . . 10 (⊤ → 1𝑜 ∈ {∅, 1𝑜, 2𝑜})
147, 13prssd 4354 . . . . . . . . 9 (⊤ → {∅, 1𝑜} ⊆ {∅, 1𝑜, 2𝑜})
152, 14sselpwd 4807 . . . . . . . 8 (⊤ → {∅, 1𝑜} ∈ 𝒫 {∅, 1𝑜, 2𝑜})
1615trud 1493 . . . . . . 7 {∅, 1𝑜} ∈ 𝒫 {∅, 1𝑜, 2𝑜}
17 df3o2 38322 . . . . . . . 8 3𝑜 = {∅, 1𝑜, 2𝑜}
1817pweqi 4162 . . . . . . 7 𝒫 3𝑜 = 𝒫 {∅, 1𝑜, 2𝑜}
1916, 18eleqtrri 2700 . . . . . 6 {∅, 1𝑜} ∈ 𝒫 3𝑜
2019a1i 11 . . . . 5 (𝑠 ∈ 𝒫 3𝑜 → {∅, 1𝑜} ∈ 𝒫 3𝑜)
21 id 22 . . . . 5 (𝑠 ∈ 𝒫 3𝑜𝑠 ∈ 𝒫 3𝑜)
2220, 21ifcld 4131 . . . 4 (𝑠 ∈ 𝒫 3𝑜 → if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ 𝒫 3𝑜)
23 eqeq1 2626 . . . . . . . 8 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → (𝑟 = {∅} ↔ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅}))
24 eqcom 2629 . . . . . . . . 9 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅} ↔ {∅} = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
25 eqif 4126 . . . . . . . . 9 ({∅} = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2624, 25bitri 264 . . . . . . . 8 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)))
2723, 26syl6bb 276 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → (𝑟 = {∅} ↔ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))))
28 id 22 . . . . . . 7 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → 𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
2927, 28ifbieq2d 4111 . . . . . 6 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1𝑜}, if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)))
30 1n0 7575 . . . . . . . . . 10 1𝑜 ≠ ∅
31 dfsn2 4190 . . . . . . . . . . . 12 {∅} = {∅, ∅}
3231eqeq1i 2627 . . . . . . . . . . 11 ({∅} = {∅, 1𝑜} ↔ {∅, ∅} = {∅, 1𝑜})
335a1i 11 . . . . . . . . . . . . 13 (⊤ → ∅ ∈ V)
3410a1i 11 . . . . . . . . . . . . 13 (⊤ → 1𝑜 ∈ On)
3533, 34preq2b 4378 . . . . . . . . . . . 12 (⊤ → ({∅, ∅} = {∅, 1𝑜} ↔ ∅ = 1𝑜))
3635trud 1493 . . . . . . . . . . 11 ({∅, ∅} = {∅, 1𝑜} ↔ ∅ = 1𝑜)
37 eqcom 2629 . . . . . . . . . . 11 (∅ = 1𝑜 ↔ 1𝑜 = ∅)
3832, 36, 373bitri 286 . . . . . . . . . 10 ({∅} = {∅, 1𝑜} ↔ 1𝑜 = ∅)
3930, 38nemtbir 2889 . . . . . . . . 9 ¬ {∅} = {∅, 1𝑜}
4039intnan 960 . . . . . . . 8 ¬ (𝑠 = {∅} ∧ {∅} = {∅, 1𝑜})
41 pm3.24 926 . . . . . . . . 9 ¬ (𝑠 = {∅} ∧ ¬ 𝑠 = {∅})
42 eqcom 2629 . . . . . . . . . 10 (𝑠 = {∅} ↔ {∅} = 𝑠)
4342anbi2ci 732 . . . . . . . . 9 ((𝑠 = {∅} ∧ ¬ 𝑠 = {∅}) ↔ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4441, 43mtbi 312 . . . . . . . 8 ¬ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)
4540, 44pm3.2ni 899 . . . . . . 7 ¬ ((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠))
4645iffalsei 4096 . . . . . 6 if(((𝑠 = {∅} ∧ {∅} = {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ {∅} = 𝑠)), {∅, 1𝑜}, if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)
4729, 46syl6eq 2672 . . . . 5 (𝑟 = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
48 clsk1indlem.k . . . . 5 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
49 prex 4909 . . . . . 6 {∅, 1𝑜} ∈ V
50 vex 3203 . . . . . 6 𝑠 ∈ V
5149, 50ifex 4156 . . . . 5 if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ V
5247, 48, 51fvmpt 6282 . . . 4 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ 𝒫 3𝑜 → (𝐾‘if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
5322, 52syl 17 . . 3 (𝑠 ∈ 𝒫 3𝑜 → (𝐾‘if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
54 eqeq1 2626 . . . . . 6 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
55 id 22 . . . . . 6 (𝑟 = 𝑠𝑟 = 𝑠)
5654, 55ifbieq2d 4111 . . . . 5 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
5756, 48, 51fvmpt 6282 . . . 4 (𝑠 ∈ 𝒫 3𝑜 → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
5857fveq2d 6195 . . 3 (𝑠 ∈ 𝒫 3𝑜 → (𝐾‘(𝐾𝑠)) = (𝐾‘if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠)))
5953, 58, 573eqtr4d 2666 . 2 (𝑠 ∈ 𝒫 3𝑜 → (𝐾‘(𝐾𝑠)) = (𝐾𝑠))
6059rgen 2922 1 𝑠 ∈ 𝒫 3𝑜(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384   = wceq 1483  wtru 1484  wcel 1990  wral 2912  Vcvv 3200  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  {cpr 4179  {ctp 4181  cmpt 4729  Oncon0 5723  cfv 5888  1𝑜c1o 7553  2𝑜c2o 7554  3𝑜c3o 7555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-1o 7560  df-2o 7561  df-3o 7562
This theorem is referenced by:  clsk1independent  38344
  Copyright terms: Public domain W3C validator