MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni Structured version   Visualization version   GIF version

Theorem rankuni 8726
Description: The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankuni (rank‘ 𝐴) = (rank‘𝐴)

Proof of Theorem rankuni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
21fveq2d 6195 . . . 4 (𝑥 = 𝐴 → (rank‘ 𝑥) = (rank‘ 𝐴))
3 fveq2 6191 . . . . 5 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
43unieqd 4446 . . . 4 (𝑥 = 𝐴 (rank‘𝑥) = (rank‘𝐴))
52, 4eqeq12d 2637 . . 3 (𝑥 = 𝐴 → ((rank‘ 𝑥) = (rank‘𝑥) ↔ (rank‘ 𝐴) = (rank‘𝐴)))
6 vex 3203 . . . . . . 7 𝑥 ∈ V
76rankuni2 8718 . . . . . 6 (rank‘ 𝑥) = 𝑧𝑥 (rank‘𝑧)
8 fvex 6201 . . . . . . 7 (rank‘𝑧) ∈ V
98dfiun2 4554 . . . . . 6 𝑧𝑥 (rank‘𝑧) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)}
107, 9eqtri 2644 . . . . 5 (rank‘ 𝑥) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)}
11 df-rex 2918 . . . . . . . 8 (∃𝑧𝑥 𝑦 = (rank‘𝑧) ↔ ∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)))
126rankel 8702 . . . . . . . . . . 11 (𝑧𝑥 → (rank‘𝑧) ∈ (rank‘𝑥))
1312anim1i 592 . . . . . . . . . 10 ((𝑧𝑥𝑦 = (rank‘𝑧)) → ((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
1413eximi 1762 . . . . . . . . 9 (∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)) → ∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
15 19.42v 1918 . . . . . . . . . 10 (∃𝑧(𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ (𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)))
16 eleq1 2689 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑧) → (𝑦 ∈ (rank‘𝑥) ↔ (rank‘𝑧) ∈ (rank‘𝑥)))
1716pm5.32ri 670 . . . . . . . . . . 11 ((𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ ((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
1817exbii 1774 . . . . . . . . . 10 (∃𝑧(𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ ∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
19 simpl 473 . . . . . . . . . . 11 ((𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)) → 𝑦 ∈ (rank‘𝑥))
20 rankon 8658 . . . . . . . . . . . . . . . . 17 (rank‘𝑥) ∈ On
2120oneli 5835 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (rank‘𝑥) → 𝑦 ∈ On)
22 r1fnon 8630 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
23 fndm 5990 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
2521, 24syl6eleqr 2712 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rank‘𝑥) → 𝑦 ∈ dom 𝑅1)
26 rankr1id 8725 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝑦)) = 𝑦)
2725, 26sylib 208 . . . . . . . . . . . . . 14 (𝑦 ∈ (rank‘𝑥) → (rank‘(𝑅1𝑦)) = 𝑦)
2827eqcomd 2628 . . . . . . . . . . . . 13 (𝑦 ∈ (rank‘𝑥) → 𝑦 = (rank‘(𝑅1𝑦)))
29 fvex 6201 . . . . . . . . . . . . . 14 (𝑅1𝑦) ∈ V
30 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1𝑦) → (rank‘𝑧) = (rank‘(𝑅1𝑦)))
3130eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1𝑦) → (𝑦 = (rank‘𝑧) ↔ 𝑦 = (rank‘(𝑅1𝑦))))
3229, 31spcev 3300 . . . . . . . . . . . . 13 (𝑦 = (rank‘(𝑅1𝑦)) → ∃𝑧 𝑦 = (rank‘𝑧))
3328, 32syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (rank‘𝑥) → ∃𝑧 𝑦 = (rank‘𝑧))
3433ancli 574 . . . . . . . . . . 11 (𝑦 ∈ (rank‘𝑥) → (𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)))
3519, 34impbii 199 . . . . . . . . . 10 ((𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)) ↔ 𝑦 ∈ (rank‘𝑥))
3615, 18, 353bitr3i 290 . . . . . . . . 9 (∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ 𝑦 ∈ (rank‘𝑥))
3714, 36sylib 208 . . . . . . . 8 (∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)) → 𝑦 ∈ (rank‘𝑥))
3811, 37sylbi 207 . . . . . . 7 (∃𝑧𝑥 𝑦 = (rank‘𝑧) → 𝑦 ∈ (rank‘𝑥))
3938abssi 3677 . . . . . 6 {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)} ⊆ (rank‘𝑥)
4039unissi 4461 . . . . 5 {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)} ⊆ (rank‘𝑥)
4110, 40eqsstri 3635 . . . 4 (rank‘ 𝑥) ⊆ (rank‘𝑥)
42 pwuni 4474 . . . . . . . 8 𝑥 ⊆ 𝒫 𝑥
43 vuniex 6954 . . . . . . . . . 10 𝑥 ∈ V
4443pwex 4848 . . . . . . . . 9 𝒫 𝑥 ∈ V
4544rankss 8712 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑥 → (rank‘𝑥) ⊆ (rank‘𝒫 𝑥))
4642, 45ax-mp 5 . . . . . . 7 (rank‘𝑥) ⊆ (rank‘𝒫 𝑥)
4743rankpw 8706 . . . . . . 7 (rank‘𝒫 𝑥) = suc (rank‘ 𝑥)
4846, 47sseqtri 3637 . . . . . 6 (rank‘𝑥) ⊆ suc (rank‘ 𝑥)
4948unissi 4461 . . . . 5 (rank‘𝑥) ⊆ suc (rank‘ 𝑥)
50 rankon 8658 . . . . . 6 (rank‘ 𝑥) ∈ On
5150onunisuci 5841 . . . . 5 suc (rank‘ 𝑥) = (rank‘ 𝑥)
5249, 51sseqtri 3637 . . . 4 (rank‘𝑥) ⊆ (rank‘ 𝑥)
5341, 52eqssi 3619 . . 3 (rank‘ 𝑥) = (rank‘𝑥)
545, 53vtoclg 3266 . 2 (𝐴 ∈ V → (rank‘ 𝐴) = (rank‘𝐴))
55 uniexb 6973 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
56 fvprc 6185 . . . . 5 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
5755, 56sylnbi 320 . . . 4 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
58 uni0 4465 . . . 4 ∅ = ∅
5957, 58syl6eqr 2674 . . 3 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
60 fvprc 6185 . . . 4 𝐴 ∈ V → (rank‘𝐴) = ∅)
6160unieqd 4446 . . 3 𝐴 ∈ V → (rank‘𝐴) = ∅)
6259, 61eqtr4d 2659 . 2 𝐴 ∈ V → (rank‘ 𝐴) = (rank‘𝐴))
6354, 62pm2.61i 176 1 (rank‘ 𝐴) = (rank‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   ciun 4520  dom cdm 5114  Oncon0 5723  suc csuc 5725   Fn wfn 5883  cfv 5888  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankuniss  8729  rankbnd2  8732  rankxplim2  8743  rankxplim3  8744  rankxpsuc  8745  r1limwun  9558  hfuni  32291
  Copyright terms: Public domain W3C validator