![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isxms2 | Structured version Visualization version GIF version |
Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isxms2 | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isms.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
2 | isms.x | . . 3 ⊢ 𝑋 = (Base‘𝐾) | |
3 | isms.d | . . 3 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
4 | 1, 2, 3 | isxms 22252 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
5 | 2, 1 | istps 20738 | . . . 4 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
6 | df-mopn 19742 | . . . . . . . . . 10 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
7 | 6 | dmmptss 5631 | . . . . . . . . 9 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
8 | toponmax 20730 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
9 | 8 | adantl 482 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ 𝐽) |
10 | simpl 473 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 = (MetOpen‘𝐷)) | |
11 | 9, 10 | eleqtrd 2703 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 ∈ (MetOpen‘𝐷)) |
12 | elfvdm 6220 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (MetOpen‘𝐷) → 𝐷 ∈ dom MetOpen) | |
13 | 11, 12 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ dom MetOpen) |
14 | 7, 13 | sseldi 3601 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ ∪ ran ∞Met) |
15 | xmetunirn 22142 | . . . . . . . 8 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
16 | 14, 15 | sylib 208 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
17 | eqid 2622 | . . . . . . . . . . . . 13 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
18 | 17 | mopntopon 22244 | . . . . . . . . . . . 12 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
19 | 16, 18 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (MetOpen‘𝐷) ∈ (TopOn‘dom dom 𝐷)) |
20 | 10, 19 | eqeltrd 2701 | . . . . . . . . . 10 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘dom dom 𝐷)) |
21 | toponuni 20719 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘dom dom 𝐷) → dom dom 𝐷 = ∪ 𝐽) | |
22 | 20, 21 | syl 17 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = ∪ 𝐽) |
23 | toponuni 20719 | . . . . . . . . . 10 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
24 | 23 | adantl 482 | . . . . . . . . 9 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝑋 = ∪ 𝐽) |
25 | 22, 24 | eqtr4d 2659 | . . . . . . . 8 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → dom dom 𝐷 = 𝑋) |
26 | 25 | fveq2d 6195 | . . . . . . 7 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (∞Met‘dom dom 𝐷) = (∞Met‘𝑋)) |
27 | 16, 26 | eleqtrd 2703 | . . . . . 6 ⊢ ((𝐽 = (MetOpen‘𝐷) ∧ 𝐽 ∈ (TopOn‘𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) |
28 | 27 | ex 450 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))) |
29 | 17 | mopntopon 22244 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) ∈ (TopOn‘𝑋)) |
30 | eleq1 2689 | . . . . . 6 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ (MetOpen‘𝐷) ∈ (TopOn‘𝑋))) | |
31 | 29, 30 | syl5ibr 236 | . . . . 5 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))) |
32 | 28, 31 | impbid 202 | . . . 4 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐷 ∈ (∞Met‘𝑋))) |
33 | 5, 32 | syl5bb 272 | . . 3 ⊢ (𝐽 = (MetOpen‘𝐷) → (𝐾 ∈ TopSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
34 | 33 | pm5.32ri 670 | . 2 ⊢ ((𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
35 | 4, 34 | bitri 264 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∪ cuni 4436 × cxp 5112 dom cdm 5114 ran crn 5115 ↾ cres 5116 ‘cfv 5888 Basecbs 15857 distcds 15950 TopOpenctopn 16082 topGenctg 16098 ∞Metcxmt 19731 ballcbl 19733 MetOpencmopn 19736 TopOnctopon 20715 TopSpctps 20736 ∞MetSpcxme 22122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-xms 22125 |
This theorem is referenced by: isms2 22255 xmsxmet 22261 setsxms 22284 tmsxms 22291 imasf1oxms 22294 ressxms 22330 prdsxms 22335 |
Copyright terms: Public domain | W3C validator |