MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmodvdslcmf Structured version   Visualization version   GIF version

Theorem prmodvdslcmf 15751
Description: The primorial of a nonnegative integer divides the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmodvdslcmf (𝑁 ∈ ℕ0 → (#p𝑁) ∥ (lcm‘(1...𝑁)))

Proof of Theorem prmodvdslcmf
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmoval 15737 . . 3 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2 eqidd 2623 . . . . . 6 (𝑘 ∈ (1...𝑁) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
3 simpr 477 . . . . . . . 8 ((𝑘 ∈ (1...𝑁) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
43eleq1d 2686 . . . . . . 7 ((𝑘 ∈ (1...𝑁) ∧ 𝑚 = 𝑘) → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
54, 3ifbieq1d 4109 . . . . . 6 ((𝑘 ∈ (1...𝑁) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
6 elfznn 12370 . . . . . 6 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
7 1nn 11031 . . . . . . . 8 1 ∈ ℕ
87a1i 11 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 1 ∈ ℕ)
96, 8ifcld 4131 . . . . . 6 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
102, 5, 6, 9fvmptd 6288 . . . . 5 (𝑘 ∈ (1...𝑁) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
1110eqcomd 2628 . . . 4 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) = ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))
1211prodeq2i 14649 . . 3 𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)
131, 12syl6eq 2672 . 2 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))
14 fzfid 12772 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
15 fz1ssnn 12372 . . . 4 (1...𝑁) ⊆ ℕ
1614, 15jctil 560 . . 3 (𝑁 ∈ ℕ0 → ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin))
17 fzssz 12343 . . . . 5 (1...𝑁) ⊆ ℤ
1817a1i 11 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℤ)
19 0nelfz1 12360 . . . . 5 0 ∉ (1...𝑁)
2019a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 0 ∉ (1...𝑁))
21 lcmfn0cl 15339 . . . 4 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
2218, 14, 20, 21syl3anc 1326 . . 3 (𝑁 ∈ ℕ0 → (lcm‘(1...𝑁)) ∈ ℕ)
23 id 22 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
247a1i 11 . . . . . 6 (𝑚 ∈ ℕ → 1 ∈ ℕ)
2523, 24ifcld 4131 . . . . 5 (𝑚 ∈ ℕ → if(𝑚 ∈ ℙ, 𝑚, 1) ∈ ℕ)
2625adantl 482 . . . 4 ((𝑁 ∈ ℕ0𝑚 ∈ ℕ) → if(𝑚 ∈ ℙ, 𝑚, 1) ∈ ℕ)
27 eqid 2622 . . . 4 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
2826, 27fmptd 6385 . . 3 (𝑁 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)):ℕ⟶ℕ)
29 simpr 477 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
3029adantr 481 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → 𝑘 ∈ (1...𝑁))
31 eldifi 3732 . . . . . . 7 (𝑥 ∈ ((1...𝑁) ∖ {𝑘}) → 𝑥 ∈ (1...𝑁))
3231adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → 𝑥 ∈ (1...𝑁))
33 eldif 3584 . . . . . . . 8 (𝑥 ∈ ((1...𝑁) ∖ {𝑘}) ↔ (𝑥 ∈ (1...𝑁) ∧ ¬ 𝑥 ∈ {𝑘}))
34 velsn 4193 . . . . . . . . . . . 12 (𝑥 ∈ {𝑘} ↔ 𝑥 = 𝑘)
3534biimpri 218 . . . . . . . . . . 11 (𝑥 = 𝑘𝑥 ∈ {𝑘})
3635equcoms 1947 . . . . . . . . . 10 (𝑘 = 𝑥𝑥 ∈ {𝑘})
3736necon3bi 2820 . . . . . . . . 9 𝑥 ∈ {𝑘} → 𝑘𝑥)
3837adantl 482 . . . . . . . 8 ((𝑥 ∈ (1...𝑁) ∧ ¬ 𝑥 ∈ {𝑘}) → 𝑘𝑥)
3933, 38sylbi 207 . . . . . . 7 (𝑥 ∈ ((1...𝑁) ∖ {𝑘}) → 𝑘𝑥)
4039adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → 𝑘𝑥)
4127fvprmselgcd1 15749 . . . . . 6 ((𝑘 ∈ (1...𝑁) ∧ 𝑥 ∈ (1...𝑁) ∧ 𝑘𝑥) → (((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
4230, 32, 40, 41syl3anc 1326 . . . . 5 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → (((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
4342ralrimiva 2966 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ∀𝑥 ∈ ((1...𝑁) ∖ {𝑘})(((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
4443ralrimiva 2966 . . 3 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ (1...𝑁)∀𝑥 ∈ ((1...𝑁) ∖ {𝑘})(((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
45 eqidd 2623 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
46 simpr 477 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
4746eleq1d 2686 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑚 = 𝑘) → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
4847, 46ifbieq1d 4109 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
4915, 29sseldi 3601 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
5017, 29sseldi 3601 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℤ)
51 1zzd 11408 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ ℤ)
5250, 51ifcld 4131 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
5345, 48, 49, 52fvmptd 6288 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
54 elfzuz2 12346 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
5554adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ‘1))
56 eluzfz1 12348 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
5755, 56syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
5829, 57ifcld 4131 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ (1...𝑁))
5916adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin))
60172a1i 12 . . . . . . . 8 ((1...𝑁) ∈ Fin → ((1...𝑁) ⊆ ℕ → (1...𝑁) ⊆ ℤ))
6160imdistanri 727 . . . . . . 7 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin))
62 dvdslcmf 15344 . . . . . . 7 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁)))
6359, 61, 623syl 18 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁)))
64 breq1 4656 . . . . . . 7 (𝑥 = if(𝑘 ∈ ℙ, 𝑘, 1) → (𝑥 ∥ (lcm‘(1...𝑁)) ↔ if(𝑘 ∈ ℙ, 𝑘, 1) ∥ (lcm‘(1...𝑁))))
6564rspcv 3305 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) ∈ (1...𝑁) → (∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∥ (lcm‘(1...𝑁))))
6658, 63, 65sylc 65 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∥ (lcm‘(1...𝑁)))
6753, 66eqbrtrd 4675 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
6867ralrimiva 2966 . . 3 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
69 coprmproddvds 15377 . . 3 ((((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) ∧ ((lcm‘(1...𝑁)) ∈ ℕ ∧ (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)):ℕ⟶ℕ) ∧ (∀𝑘 ∈ (1...𝑁)∀𝑥 ∈ ((1...𝑁) ∖ {𝑘})(((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1 ∧ ∀𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))) → ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
7016, 22, 28, 44, 68, 69syl122anc 1335 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
7113, 70eqbrtrd 4675 1 (𝑁 ∈ ℕ0 → (#p𝑁) ∥ (lcm‘(1...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wnel 2897  wral 2912  cdif 3571  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  1c1 9937  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cprod 14635  cdvds 14983   gcd cgcd 15216  lcmclcmf 15302  cprime 15385  #pcprmo 15735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-lcmf 15304  df-prm 15386  df-prmo 15736
This theorem is referenced by:  prmolelcmf  15752
  Copyright terms: Public domain W3C validator