MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifn0 Structured version   Visualization version   GIF version

Theorem pssdifn0 3944
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
Assertion
Ref Expression
pssdifn0 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)

Proof of Theorem pssdifn0
StepHypRef Expression
1 ssdif0 3942 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
2 eqss 3618 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32simplbi2 655 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐴 = 𝐵))
41, 3syl5bir 233 . . 3 (𝐴𝐵 → ((𝐵𝐴) = ∅ → 𝐴 = 𝐵))
54necon3d 2815 . 2 (𝐴𝐵 → (𝐴𝐵 → (𝐵𝐴) ≠ ∅))
65imp 445 1 ((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wne 2794  cdif 3571  wss 3574  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  pssdif  3945  tz7.7  5749  domdifsn  8043  inf3lem3  8527  isf32lem6  9180  fclscf  21829  flimfnfcls  21832  lebnumlem1  22760  lebnumlem2  22761  lebnumlem3  22762  ig1peu  23931  ig1pdvds  23936  divrngidl  33827
  Copyright terms: Public domain W3C validator