MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem3 Structured version   Visualization version   GIF version

Theorem inf3lem3 8527
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 8500. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . . 4 𝐴 ∈ V
4 inf3lem.4 . . . 4 𝐵 ∈ V
51, 2, 3, 4inf3lemd 8524 . . 3 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
61, 2, 3, 4inf3lem2 8526 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
76com12 32 . . 3 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
8 pssdifn0 3944 . . 3 (((𝐹𝐴) ⊆ 𝑥 ∧ (𝐹𝐴) ≠ 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅)
95, 7, 8syl6an 568 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅))
10 vex 3203 . . . . 5 𝑥 ∈ V
1110difexi 4809 . . . 4 (𝑥 ∖ (𝐹𝐴)) ∈ V
12 zfreg 8500 . . . 4 (((𝑥 ∖ (𝐹𝐴)) ∈ V ∧ (𝑥 ∖ (𝐹𝐴)) ≠ ∅) → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1311, 12mpan 706 . . 3 ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
14 eldifi 3732 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → 𝑣𝑥)
15 inssdif0 3947 . . . . . . . . . . 11 ((𝑣𝑥) ⊆ (𝐹𝐴) ↔ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1615biimpri 218 . . . . . . . . . 10 ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝑣𝑥) ⊆ (𝐹𝐴))
1714, 16anim12i 590 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
18 vex 3203 . . . . . . . . . 10 𝑣 ∈ V
19 fvex 6201 . . . . . . . . . 10 (𝐹𝐴) ∈ V
201, 2, 18, 19inf3lema 8521 . . . . . . . . 9 (𝑣 ∈ (𝐺‘(𝐹𝐴)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
2117, 20sylibr 224 . . . . . . . 8 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐺‘(𝐹𝐴)))
221, 2, 3, 4inf3lemc 8523 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹𝐴)))
2322eleq2d 2687 . . . . . . . 8 (𝐴 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝐴) ↔ 𝑣 ∈ (𝐺‘(𝐹𝐴))))
2421, 23syl5ibr 236 . . . . . . 7 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐹‘suc 𝐴)))
25 eldifn 3733 . . . . . . . . 9 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ¬ 𝑣 ∈ (𝐹𝐴))
2625adantr 481 . . . . . . . 8 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹𝐴))
2726a1i 11 . . . . . . 7 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹𝐴)))
2824, 27jcad 555 . . . . . 6 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴))))
29 eleq2 2690 . . . . . . . . 9 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹𝐴) ↔ 𝑣 ∈ (𝐹‘suc 𝐴)))
3029biimprd 238 . . . . . . . 8 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)))
31 iman 440 . . . . . . . 8 ((𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)) ↔ ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3230, 31sylib 208 . . . . . . 7 ((𝐹𝐴) = (𝐹‘suc 𝐴) → ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3332necon2ai 2823 . . . . . 6 ((𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))
3428, 33syl6 35 . . . . 5 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3534expd 452 . . . 4 (𝐴 ∈ ω → (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))))
3635rexlimdv 3030 . . 3 (𝐴 ∈ ω → (∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3713, 36syl5 34 . 2 (𝐴 ∈ ω → ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
389, 37syldc 48 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915   cuni 4436  cmpt 4729  cres 5116  suc csuc 5725  cfv 5888  ωcom 7065  reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  inf3lem4  8528
  Copyright terms: Public domain W3C validator