| Step | Hyp | Ref
| Expression |
| 1 | | lebnumlem1.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝑈 ∈ Fin) |
| 3 | | lebnum.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 4 | 3 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (Met‘𝑋)) |
| 5 | | difssd 3738 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ⊆ 𝑋) |
| 6 | | lebnum.s |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
| 7 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝑈 ⊆ 𝐽) |
| 8 | 7 | sselda 3603 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝑘 ∈ 𝐽) |
| 9 | | elssuni 4467 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐽 → 𝑘 ⊆ ∪ 𝐽) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝑘 ⊆ ∪ 𝐽) |
| 11 | | metxmet 22139 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 12 | 3, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 13 | | lebnum.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (MetOpen‘𝐷) |
| 14 | 13 | mopnuni 22246 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 15 | 12, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 16 | 15 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝑋 = ∪ 𝐽) |
| 17 | 10, 16 | sseqtr4d 3642 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝑘 ⊆ 𝑋) |
| 18 | | lebnumlem1.n |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| 19 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑋 → (𝑘 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) |
| 20 | 19 | notbid 308 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑋 → (¬ 𝑘 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈)) |
| 21 | 18, 20 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘 ∈ 𝑈)) |
| 22 | 21 | necon2ad 2809 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋)) |
| 23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑘 ∈ 𝑈 → 𝑘 ≠ 𝑋)) |
| 24 | 23 | imp 445 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝑘 ≠ 𝑋) |
| 25 | | pssdifn0 3944 |
. . . . . . . 8
⊢ ((𝑘 ⊆ 𝑋 ∧ 𝑘 ≠ 𝑋) → (𝑋 ∖ 𝑘) ≠ ∅) |
| 26 | 17, 24, 25 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → (𝑋 ∖ 𝑘) ≠ ∅) |
| 27 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 28 | 27 | metdsre 22656 |
. . . . . . 7
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∖ 𝑘) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑘) ≠ ∅) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ) |
| 29 | 4, 5, 26, 28 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ) |
| 30 | 27 | fmpt 6381 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑋 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ ↔ (𝑦 ∈
𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ) |
| 31 | 29, 30 | sylibr 224 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → ∀𝑦 ∈ 𝑋 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ) |
| 32 | | simplr 792 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝑦 ∈ 𝑋) |
| 33 | | rsp 2929 |
. . . . 5
⊢
(∀𝑦 ∈
𝑋 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ → (𝑦 ∈
𝑋 → inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ)) |
| 34 | 31, 32, 33 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ) |
| 35 | 2, 34 | fsumrecl 14465 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ) |
| 36 | | lebnum.u |
. . . . . . 7
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
| 37 | 36 | eleq2d 2687 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ 𝑈)) |
| 38 | 37 | biimpa 501 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ ∪ 𝑈) |
| 39 | | eluni2 4440 |
. . . . 5
⊢ (𝑦 ∈ ∪ 𝑈
↔ ∃𝑚 ∈
𝑈 𝑦 ∈ 𝑚) |
| 40 | 38, 39 | sylib 208 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ∃𝑚 ∈ 𝑈 𝑦 ∈ 𝑚) |
| 41 | | 0red 10041 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 0 ∈ ℝ) |
| 42 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑦 ∈ 𝑋) |
| 43 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )) = (𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, <
)) |
| 44 | 43 | metdsval 22650 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑋 → ((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 45 | 42, 44 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → ((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 46 | 3 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝐷 ∈ (Met‘𝑋)) |
| 47 | | difssd 3738 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (𝑋 ∖ 𝑚) ⊆ 𝑋) |
| 48 | 6 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑈 ⊆ 𝐽) |
| 49 | | simprl 794 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑚 ∈ 𝑈) |
| 50 | 48, 49 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑚 ∈ 𝐽) |
| 51 | | elssuni 4467 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝐽 → 𝑚 ⊆ ∪ 𝐽) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑚 ⊆ ∪ 𝐽) |
| 53 | 46, 11, 14 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑋 = ∪ 𝐽) |
| 54 | 52, 53 | sseqtr4d 3642 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑚 ⊆ 𝑋) |
| 55 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑋 → (𝑚 ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) |
| 56 | 55 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑋 → (¬ 𝑚 ∈ 𝑈 ↔ ¬ 𝑋 ∈ 𝑈)) |
| 57 | 18, 56 | syl5ibrcom 237 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑚 = 𝑋 → ¬ 𝑚 ∈ 𝑈)) |
| 58 | 57 | necon2ad 2809 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑚 ∈ 𝑈 → 𝑚 ≠ 𝑋)) |
| 59 | 58 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (𝑚 ∈ 𝑈 → 𝑚 ≠ 𝑋)) |
| 60 | 49, 59 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑚 ≠ 𝑋) |
| 61 | | pssdifn0 3944 |
. . . . . . . . 9
⊢ ((𝑚 ⊆ 𝑋 ∧ 𝑚 ≠ 𝑋) → (𝑋 ∖ 𝑚) ≠ ∅) |
| 62 | 54, 60, 61 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (𝑋 ∖ 𝑚) ≠ ∅) |
| 63 | 43 | metdsre 22656 |
. . . . . . . 8
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋 ∖ 𝑚) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑚) ≠ ∅) → (𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ) |
| 64 | 46, 47, 62, 63 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ) |
| 65 | 64, 42 | ffvelrnd 6360 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → ((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈
ℝ) |
| 66 | 45, 65 | eqeltrrd 2702 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ) |
| 67 | 35 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ) |
| 68 | 12 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 69 | 43 | metdsf 22651 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋 ∖ 𝑚) ⊆ 𝑋) → (𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞)) |
| 70 | 68, 47, 69 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞)) |
| 71 | 70, 42 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → ((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈
(0[,]+∞)) |
| 72 | | elxrge0 12281 |
. . . . . . . . 9
⊢ (((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ (0[,]+∞) ↔
(((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ*
∧ 0 ≤ ((𝑤 ∈
𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))) |
| 73 | 71, 72 | sylib 208 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ∈ ℝ*
∧ 0 ≤ ((𝑤 ∈
𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦))) |
| 74 | 73 | simprd 479 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 0 ≤ ((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)) |
| 75 | | elndif 3734 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑚 → ¬ 𝑦 ∈ (𝑋 ∖ 𝑚)) |
| 76 | 75 | ad2antll 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → ¬ 𝑦 ∈ (𝑋 ∖ 𝑚)) |
| 77 | 53 | difeq1d 3727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (𝑋 ∖ 𝑚) = (∪ 𝐽 ∖ 𝑚)) |
| 78 | 13 | mopntop 22245 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 79 | 68, 78 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝐽 ∈ Top) |
| 80 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 81 | 80 | opncld 20837 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑚) ∈ (Clsd‘𝐽)) |
| 82 | 79, 50, 81 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (∪ 𝐽 ∖ 𝑚) ∈ (Clsd‘𝐽)) |
| 83 | 77, 82 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (𝑋 ∖ 𝑚) ∈ (Clsd‘𝐽)) |
| 84 | | cldcls 20846 |
. . . . . . . . . 10
⊢ ((𝑋 ∖ 𝑚) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘(𝑋 ∖ 𝑚)) = (𝑋 ∖ 𝑚)) |
| 85 | 83, 84 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑚)) = (𝑋 ∖ 𝑚)) |
| 86 | 76, 85 | neleqtrrd 2723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋 ∖ 𝑚))) |
| 87 | 43, 13 | metdseq0 22657 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋 ∖ 𝑚) ⊆ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋 ∖ 𝑚)))) |
| 88 | 68, 47, 42, 87 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) = 0 ↔ 𝑦 ∈ ((cls‘𝐽)‘(𝑋 ∖ 𝑚)))) |
| 89 | 88 | necon3abid 2830 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → (((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0 ↔ ¬ 𝑦 ∈ ((cls‘𝐽)‘(𝑋 ∖ 𝑚)))) |
| 90 | 86, 89 | mpbird 247 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → ((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦) ≠ 0) |
| 91 | 65, 74, 90 | ne0gt0d 10174 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 0 < ((𝑤 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑤𝐷𝑧)), ℝ*, < ))‘𝑦)) |
| 92 | 91, 45 | breqtrd 4679 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 0 < inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 93 | 1 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 𝑈 ∈ Fin) |
| 94 | 34 | adantlr 751 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) ∧ 𝑘 ∈ 𝑈) → inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ) |
| 95 | 12 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 𝐷 ∈ (∞Met‘𝑋)) |
| 96 | 27 | metdsf 22651 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋 ∖ 𝑘) ⊆ 𝑋) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞)) |
| 97 | 95, 5, 96 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → (𝑦 ∈ 𝑋 ↦ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞)) |
| 98 | 27 | fmpt 6381 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝑋 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
(0[,]+∞) ↔ (𝑦
∈ 𝑋 ↦ inf(ran
(𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶(0[,]+∞)) |
| 99 | 97, 98 | sylibr 224 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → ∀𝑦 ∈ 𝑋 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
(0[,]+∞)) |
| 100 | | rsp 2929 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑋 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
(0[,]+∞) → (𝑦
∈ 𝑋 → inf(ran
(𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
(0[,]+∞))) |
| 101 | 99, 32, 100 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
(0[,]+∞)) |
| 102 | | elxrge0 12281 |
. . . . . . . . 9
⊢ (inf(ran
(𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
(0[,]+∞) ↔ (inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
))) |
| 103 | 101, 102 | sylib 208 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → (inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ* ∧ 0 ≤ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
))) |
| 104 | 103 | simprd 479 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑘 ∈ 𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 105 | 104 | adantlr 751 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) ∧ 𝑘 ∈ 𝑈) → 0 ≤ inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 106 | | difeq2 3722 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝑋 ∖ 𝑘) = (𝑋 ∖ 𝑚)) |
| 107 | 106 | mpteq1d 4738 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧))) |
| 108 | 107 | rneqd 5353 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧))) |
| 109 | 108 | infeq1d 8383 |
. . . . . 6
⊢ (𝑘 = 𝑚 → inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran
(𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 110 | 93, 94, 105, 109, 49 | fsumge1 14529 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → inf(ran (𝑧 ∈ (𝑋 ∖ 𝑚) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ≤
Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 111 | 41, 66, 67, 92, 110 | ltletrd 10197 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ (𝑚 ∈ 𝑈 ∧ 𝑦 ∈ 𝑚)) → 0 < Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 112 | 40, 111 | rexlimddv 3035 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 0 < Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 113 | 35, 112 | elrpd 11869 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) ∈
ℝ+) |
| 114 | | lebnumlem1.f |
. 2
⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, <
)) |
| 115 | 113, 114 | fmptd 6385 |
1
⊢ (𝜑 → 𝐹:𝑋⟶ℝ+) |