MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3 Structured version   Visualization version   GIF version

Theorem lebnumlem3 22762
Description: Lemma for lebnum 22763. By the previous lemmas, 𝐹 is continuous and positive on a compact set, so it has a positive minimum 𝑟. Then setting 𝑑 = 𝑟 / #(𝑈), since for each 𝑢𝑈 we have ball(𝑥, 𝑑) ⊆ 𝑢 iff 𝑑𝑑(𝑥, 𝑋𝑢), if ¬ ball(𝑥, 𝑑) ⊆ 𝑢 for all 𝑢 then summing over 𝑢 yields Σ𝑢𝑈𝑑(𝑥, 𝑋𝑢) = 𝐹(𝑥) < Σ𝑢𝑈𝑑 = 𝑟, in contradiction to the assumption that 𝑟 is the minimum of 𝐹. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j 𝐽 = (MetOpen‘𝐷)
lebnum.d (𝜑𝐷 ∈ (Met‘𝑋))
lebnum.c (𝜑𝐽 ∈ Comp)
lebnum.s (𝜑𝑈𝐽)
lebnum.u (𝜑𝑋 = 𝑈)
lebnumlem1.u (𝜑𝑈 ∈ Fin)
lebnumlem1.n (𝜑 → ¬ 𝑋𝑈)
lebnumlem1.f 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
lebnumlem2.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
lebnumlem3 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Distinct variable groups:   𝑘,𝑑,𝑢,𝑥,𝑦,𝑧,𝐷   𝐽,𝑑,𝑘,𝑥,𝑦,𝑧   𝑈,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐹   𝜑,𝑑,𝑘,𝑥,𝑦,𝑧   𝑋,𝑑,𝑘,𝑢,𝑥,𝑦,𝑧   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑦,𝑧,𝑢,𝑘,𝑑)   𝐽(𝑢)   𝐾(𝑦,𝑧,𝑢,𝑘,𝑑)

Proof of Theorem lebnumlem3
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11836 . . . 4 1 ∈ ℝ+
21ne0ii 3923 . . 3 + ≠ ∅
3 ral0 4076 . . . . 5 𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢
4 simpr 477 . . . . . 6 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
54raleqdv 3144 . . . . 5 ((𝜑𝑋 = ∅) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ ∅ ∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
63, 5mpbiri 248 . . . 4 ((𝜑𝑋 = ∅) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
76ralrimivw 2967 . . 3 ((𝜑𝑋 = ∅) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
8 r19.2z 4060 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
92, 7, 8sylancr 695 . 2 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
10 lebnum.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
11 lebnum.d . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
12 lebnum.c . . . . . . 7 (𝜑𝐽 ∈ Comp)
13 lebnum.s . . . . . . 7 (𝜑𝑈𝐽)
14 lebnum.u . . . . . . 7 (𝜑𝑋 = 𝑈)
15 lebnumlem1.u . . . . . . 7 (𝜑𝑈 ∈ Fin)
16 lebnumlem1.n . . . . . . 7 (𝜑 → ¬ 𝑋𝑈)
17 lebnumlem1.f . . . . . . 7 𝐹 = (𝑦𝑋 ↦ Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1 22760 . . . . . 6 (𝜑𝐹:𝑋⟶ℝ+)
1918adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐹:𝑋⟶ℝ+)
20 frn 6053 . . . . 5 (𝐹:𝑋⟶ℝ+ → ran 𝐹 ⊆ ℝ+)
2119, 20syl 17 . . . 4 ((𝜑𝑋 ≠ ∅) → ran 𝐹 ⊆ ℝ+)
22 eqid 2622 . . . . . . 7 𝐽 = 𝐽
23 lebnumlem2.k . . . . . . 7 𝐾 = (topGen‘ran (,))
2412adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ∈ Comp)
2510, 11, 12, 13, 14, 15, 16, 17, 23lebnumlem2 22761 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2625adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
27 metxmet 22139 . . . . . . . . . 10 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2810mopnuni 22246 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
2911, 27, 283syl 18 . . . . . . . . 9 (𝜑𝑋 = 𝐽)
3029neeq1d 2853 . . . . . . . 8 (𝜑 → (𝑋 ≠ ∅ ↔ 𝐽 ≠ ∅))
3130biimpa 501 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝐽 ≠ ∅)
3222, 23, 24, 26, 31evth2 22759 . . . . . 6 ((𝜑𝑋 ≠ ∅) → ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥))
3329adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → 𝑋 = 𝐽)
34 raleq 3138 . . . . . . . 8 (𝑋 = 𝐽 → (∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∀𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3534rexeqbi1dv 3147 . . . . . . 7 (𝑋 = 𝐽 → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3633, 35syl 17 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥) ↔ ∃𝑤 𝐽𝑥 𝐽(𝐹𝑤) ≤ (𝐹𝑥)))
3732, 36mpbird 247 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥))
38 ffn 6045 . . . . . 6 (𝐹:𝑋⟶ℝ+𝐹 Fn 𝑋)
39 breq1 4656 . . . . . . . 8 (𝑟 = (𝐹𝑤) → (𝑟 ≤ (𝐹𝑥) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
4039ralbidv 2986 . . . . . . 7 (𝑟 = (𝐹𝑤) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∀𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4140rexrn 6361 . . . . . 6 (𝐹 Fn 𝑋 → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4219, 38, 413syl 18 . . . . 5 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) ↔ ∃𝑤𝑋𝑥𝑋 (𝐹𝑤) ≤ (𝐹𝑥)))
4337, 42mpbird 247 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥))
44 ssrexv 3667 . . . 4 (ran 𝐹 ⊆ ℝ+ → (∃𝑟 ∈ ran 𝐹𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥)))
4521, 43, 44sylc 65 . . 3 ((𝜑𝑋 ≠ ∅) → ∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥))
46 simpr 477 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
4714ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 = 𝑈)
48 simplr 792 . . . . . . . . . 10 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑋 ≠ ∅)
4947, 48eqnetrrd 2862 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
50 unieq 4444 . . . . . . . . . . 11 (𝑈 = ∅ → 𝑈 = ∅)
51 uni0 4465 . . . . . . . . . . 11 ∅ = ∅
5250, 51syl6eq 2672 . . . . . . . . . 10 (𝑈 = ∅ → 𝑈 = ∅)
5352necon3i 2826 . . . . . . . . 9 ( 𝑈 ≠ ∅ → 𝑈 ≠ ∅)
5449, 53syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ≠ ∅)
5515ad2antrr 762 . . . . . . . . 9 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝑈 ∈ Fin)
56 hashnncl 13157 . . . . . . . . 9 (𝑈 ∈ Fin → ((#‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5755, 56syl 17 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → ((#‘𝑈) ∈ ℕ ↔ 𝑈 ≠ ∅))
5854, 57mpbird 247 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (#‘𝑈) ∈ ℕ)
5958nnrpd 11870 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (#‘𝑈) ∈ ℝ+)
6046, 59rpdivcld 11889 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (𝑟 / (#‘𝑈)) ∈ ℝ+)
61 ralnex 2992 . . . . . . . 8 (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢 ↔ ¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)
6255adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝑈 ∈ Fin)
6354adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝑈 ≠ ∅)
64 simprl 794 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝑥𝑋)
6564adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑥𝑋)
66 eqid 2622 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) = (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))
6766metdsval 22650 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6865, 67syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
6911ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
7069ad2antrr 762 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (Met‘𝑋))
71 difssd 3738 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ⊆ 𝑋)
72 elssuni 4467 . . . . . . . . . . . . . . . . . 18 (𝑘𝑈𝑘 𝑈)
7372adantl 482 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘 𝑈)
7447ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑋 = 𝑈)
7573, 74sseqtr4d 3642 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
76 eleq1 2689 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑋 → (𝑘𝑈𝑋𝑈))
7776notbid 308 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑋 → (¬ 𝑘𝑈 ↔ ¬ 𝑋𝑈))
7816, 77syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑘 = 𝑋 → ¬ 𝑘𝑈))
7978necon2ad 2809 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑘𝑈𝑘𝑋))
8079ad3antrrr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (𝑘𝑈𝑘𝑋))
8180imp 445 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝑘𝑋)
82 pssdifn0 3944 . . . . . . . . . . . . . . . 16 ((𝑘𝑋𝑘𝑋) → (𝑋𝑘) ≠ ∅)
8375, 81, 82syl2anc 693 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ ∅)
8466metdsre 22656 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋 ∧ (𝑋𝑘) ≠ ∅) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8570, 71, 83, 84syl3anc 1326 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )):𝑋⟶ℝ)
8685, 65ffvelrnd 6360 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ∈ ℝ)
8768, 86eqeltrrd 2702 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ ℝ)
8860ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (#‘𝑈)) ∈ ℝ+)
8988rpred 11872 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (#‘𝑈)) ∈ ℝ)
90 simprr 796 . . . . . . . . . . . . . . . 16 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)
91 sseq2 3627 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑘 → ((𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑘))
9291notbid 308 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑘 → (¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢 ↔ ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑘))
9392rspccva 3308 . . . . . . . . . . . . . . . 16 ((∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑘)
9490, 93sylan 488 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑘)
9570, 27syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → 𝐷 ∈ (∞Met‘𝑋))
9688rpxrd 11873 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑟 / (#‘𝑈)) ∈ ℝ*)
9766metdsge 22652 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑋𝑘) ⊆ 𝑋𝑥𝑋) ∧ (𝑟 / (#‘𝑈)) ∈ ℝ*) → ((𝑟 / (#‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈)))) = ∅))
9895, 71, 65, 96, 97syl31anc 1329 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (#‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) ↔ ((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈)))) = ∅))
99 blssm 22223 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑟 / (#‘𝑈)) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑋)
10095, 65, 96, 99syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑋)
101 difin0ss 3946 . . . . . . . . . . . . . . . . 17 (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈)))) = ∅ → ((𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑋 → (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑘))
102100, 101syl5com 31 . . . . . . . . . . . . . . . 16 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑋𝑘) ∩ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈)))) = ∅ → (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑘))
10398, 102sylbid 230 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑟 / (#‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) → (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑘))
10494, 103mtod 189 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ¬ (𝑟 / (#‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥))
10586, 89ltnled 10184 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → (((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (#‘𝑈)) ↔ ¬ (𝑟 / (#‘𝑈)) ≤ ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥)))
106104, 105mpbird 247 . . . . . . . . . . . . 13 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → ((𝑦𝑋 ↦ inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ))‘𝑥) < (𝑟 / (#‘𝑈)))
10768, 106eqbrtrrd 4677 . . . . . . . . . . . 12 (((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) ∧ 𝑘𝑈) → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < (𝑟 / (#‘𝑈)))
10862, 63, 87, 89, 107fsumlt 14532 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) < Σ𝑘𝑈 (𝑟 / (#‘𝑈)))
109 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦𝐷𝑧) = (𝑥𝐷𝑧))
110109mpteq2dv 4745 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
111110rneqd 5353 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)) = ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)))
112111infeq1d 8383 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
113112sumeq2sdv 14435 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < ) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
114 sumex 14418 . . . . . . . . . . . . 13 Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ) ∈ V
115113, 17, 114fvmpt 6282 . . . . . . . . . . . 12 (𝑥𝑋 → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11664, 115syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) = Σ𝑘𝑈 inf(ran (𝑧 ∈ (𝑋𝑘) ↦ (𝑥𝐷𝑧)), ℝ*, < ))
11760adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (𝑟 / (#‘𝑈)) ∈ ℝ+)
118117rpcnd 11874 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (𝑟 / (#‘𝑈)) ∈ ℂ)
119 fsumconst 14522 . . . . . . . . . . . . 13 ((𝑈 ∈ Fin ∧ (𝑟 / (#‘𝑈)) ∈ ℂ) → Σ𝑘𝑈 (𝑟 / (#‘𝑈)) = ((#‘𝑈) · (𝑟 / (#‘𝑈))))
12062, 118, 119syl2anc 693 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → Σ𝑘𝑈 (𝑟 / (#‘𝑈)) = ((#‘𝑈) · (𝑟 / (#‘𝑈))))
121 simplr 792 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
122121rpcnd 11874 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℂ)
12358adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (#‘𝑈) ∈ ℕ)
124123nncnd 11036 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (#‘𝑈) ∈ ℂ)
125123nnne0d 11065 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (#‘𝑈) ≠ 0)
126122, 124, 125divcan2d 10803 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → ((#‘𝑈) · (𝑟 / (#‘𝑈))) = 𝑟)
127120, 126eqtr2d 2657 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝑟 = Σ𝑘𝑈 (𝑟 / (#‘𝑈)))
128108, 116, 1273brtr4d 4685 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) < 𝑟)
12919ad2antrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝐹:𝑋⟶ℝ+)
130129, 64ffvelrnd 6360 . . . . . . . . . . . 12 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ+)
131130rpred 11872 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → (𝐹𝑥) ∈ ℝ)
132121rpred 11872 . . . . . . . . . . 11 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → 𝑟 ∈ ℝ)
133131, 132ltnled 10184 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → ((𝐹𝑥) < 𝑟 ↔ ¬ 𝑟 ≤ (𝐹𝑥)))
134128, 133mpbid 222 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ (𝑥𝑋 ∧ ∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢)) → ¬ 𝑟 ≤ (𝐹𝑥))
135134expr 643 . . . . . . . 8 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (∀𝑢𝑈 ¬ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
13661, 135syl5bir 233 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (¬ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢 → ¬ 𝑟 ≤ (𝐹𝑥)))
137136con4d 114 . . . . . 6 ((((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑟 ≤ (𝐹𝑥) → ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢))
138137ralimdva 2962 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢))
139 oveq2 6658 . . . . . . . . 9 (𝑑 = (𝑟 / (#‘𝑈)) → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))))
140139sseq1d 3632 . . . . . . . 8 (𝑑 = (𝑟 / (#‘𝑈)) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢))
141140rexbidv 3052 . . . . . . 7 (𝑑 = (𝑟 / (#‘𝑈)) → (∃𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢))
142141ralbidv 2986 . . . . . 6 (𝑑 = (𝑟 / (#‘𝑈)) → (∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢))
143142rspcev 3309 . . . . 5 (((𝑟 / (#‘𝑈)) ∈ ℝ+ ∧ ∀𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)(𝑟 / (#‘𝑈))) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
14460, 138, 143syl6an 568 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ 𝑟 ∈ ℝ+) → (∀𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
145144rexlimdva 3031 . . 3 ((𝜑𝑋 ≠ ∅) → (∃𝑟 ∈ ℝ+𝑥𝑋 𝑟 ≤ (𝐹𝑥) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢))
14645, 145mpd 15 . 2 ((𝜑𝑋 ≠ ∅) → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
1479, 146pm2.61dane 2881 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝑋𝑢𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  cin 3573  wss 3574  c0 3915   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  infcinf 8347  cc 9934  cr 9935  1c1 9937   · cmul 9941  *cxr 10073   < clt 10074  cle 10075   / cdiv 10684  cn 11020  +crp 11832  (,)cioo 12175  #chash 13117  Σcsu 14416  topGenctg 16098  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  MetOpencmopn 19736   Cn ccn 21028  Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  lebnum  22763
  Copyright terms: Public domain W3C validator