| Step | Hyp | Ref
| Expression |
| 1 | | flimfcls 21830 |
. . . . 5
⊢ (𝐽 fLim 𝑔) ⊆ (𝐽 fClus 𝑔) |
| 2 | | flimtop 21769 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) |
| 3 | | flimfnfcls.x |
. . . . . . . . . 10
⊢ 𝑋 = ∪
𝐽 |
| 4 | 3 | toptopon 20722 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 2, 4 | sylib 208 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | 5 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐽 ∈ (TopOn‘𝑋)) |
| 7 | | simplr 792 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝑔 ∈ (Fil‘𝑋)) |
| 8 | | simpr 477 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐹 ⊆ 𝑔) |
| 9 | | flimss2 21776 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑔 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔)) |
| 10 | 6, 7, 8, 9 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → (𝐽 fLim 𝐹) ⊆ (𝐽 fLim 𝑔)) |
| 11 | | simpll 790 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐴 ∈ (𝐽 fLim 𝐹)) |
| 12 | 10, 11 | sseldd 3604 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐴 ∈ (𝐽 fLim 𝑔)) |
| 13 | 1, 12 | sseldi 3601 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) ∧ 𝐹 ⊆ 𝑔) → 𝐴 ∈ (𝐽 fClus 𝑔)) |
| 14 | 13 | ex 450 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑔 ∈ (Fil‘𝑋)) → (𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
| 15 | 14 | ralrimiva 2966 |
. 2
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
| 16 | | sseq2 3627 |
. . . . . 6
⊢ (𝑔 = 𝐹 → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝐹)) |
| 17 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑔 = 𝐹 → (𝐽 fClus 𝑔) = (𝐽 fClus 𝐹)) |
| 18 | 17 | eleq2d 2687 |
. . . . . 6
⊢ (𝑔 = 𝐹 → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus 𝐹))) |
| 19 | 16, 18 | imbi12d 334 |
. . . . 5
⊢ (𝑔 = 𝐹 → ((𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)))) |
| 20 | 19 | rspcv 3305 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)))) |
| 21 | | ssid 3624 |
. . . . . 6
⊢ 𝐹 ⊆ 𝐹 |
| 22 | | id 22 |
. . . . . 6
⊢ ((𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹))) |
| 23 | 21, 22 | mpi 20 |
. . . . 5
⊢ ((𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)) → 𝐴 ∈ (𝐽 fClus 𝐹)) |
| 24 | | fclstop 21815 |
. . . . . 6
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) |
| 25 | 3 | fclselbas 21820 |
. . . . . 6
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ 𝑋) |
| 26 | 24, 25 | jca 554 |
. . . . 5
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) |
| 27 | 23, 26 | syl 17 |
. . . 4
⊢ ((𝐹 ⊆ 𝐹 → 𝐴 ∈ (𝐽 fClus 𝐹)) → (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) |
| 28 | 20, 27 | syl6 35 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋))) |
| 29 | | disjdif 4040 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∩ (𝑋 ∖ 𝑜)) = ∅ |
| 30 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐹 ∈ (Fil‘𝑋)) |
| 31 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐽 ∈ Top) |
| 32 | 3 | topopn 20711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑋 ∈ 𝐽) |
| 34 | | pwexg 4850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) |
| 35 | | rabexg 4812 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(𝒫 𝑋 ∈
V → {𝑥 ∈
𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ V) |
| 36 | 33, 34, 35 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ V) |
| 37 | | unexg 6959 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ V) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ∈ V) |
| 38 | 30, 36, 37 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ∈ V) |
| 39 | | ssfii 8325 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ∈ V → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) |
| 41 | | filsspw 21655 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
| 42 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋 |
| 43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ⊆ 𝒫 𝑋) |
| 44 | 41, 43 | unssd 3789 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋) |
| 45 | 44 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋) |
| 46 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ⊆ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) |
| 47 | | difss 3737 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∖ 𝑜) ⊆ 𝑋 |
| 48 | | elpw2g 4827 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑋 ∈ 𝐽 → ((𝑋 ∖ 𝑜) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑋)) |
| 49 | 33, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ((𝑋 ∖ 𝑜) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑋)) |
| 50 | 47, 49 | mpbiri 248 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ 𝒫 𝑋) |
| 51 | | ssid 3624 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∖ 𝑜) ⊆ (𝑋 ∖ 𝑜) |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ⊆ (𝑋 ∖ 𝑜)) |
| 53 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (𝑋 ∖ 𝑜) → ((𝑋 ∖ 𝑜) ⊆ 𝑥 ↔ (𝑋 ∖ 𝑜) ⊆ (𝑋 ∖ 𝑜))) |
| 54 | 53 | elrab 3363 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑋 ∖ 𝑜) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ↔ ((𝑋 ∖ 𝑜) ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑜) ⊆ (𝑋 ∖ 𝑜))) |
| 55 | 50, 52, 54 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) |
| 56 | 46, 55 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) |
| 57 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∖ 𝑜) ∈ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ≠ ∅) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ≠ ∅) |
| 59 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑧 → ((𝑋 ∖ 𝑜) ⊆ 𝑥 ↔ (𝑋 ∖ 𝑜) ⊆ 𝑧)) |
| 60 | 59 | elrab 3363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ↔ (𝑧 ∈ 𝒫 𝑋 ∧ (𝑋 ∖ 𝑜) ⊆ 𝑧)) |
| 61 | 60 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} → (𝑋 ∖ 𝑜) ⊆ 𝑧) |
| 62 | 61 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑋 ∖ 𝑜) ⊆ 𝑧) |
| 63 | | sslin 3839 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∖ 𝑜) ⊆ 𝑧 → (𝑦 ∩ (𝑋 ∖ 𝑜)) ⊆ (𝑦 ∩ 𝑧)) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋 ∖ 𝑜)) ⊆ (𝑦 ∩ 𝑧)) |
| 65 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ¬ 𝑜 ∈ 𝐹) |
| 66 | 65 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ¬ 𝑜 ∈ 𝐹) |
| 67 | | inssdif0 3947 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∩ 𝑋) ⊆ 𝑜 ↔ (𝑦 ∩ (𝑋 ∖ 𝑜)) = ∅) |
| 68 | | simplll 798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → 𝐹 ∈ (Fil‘𝑋)) |
| 69 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → 𝑦 ∈ 𝐹) |
| 70 | | filelss 21656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦 ∈ 𝐹) → 𝑦 ⊆ 𝑋) |
| 71 | 68, 69, 70 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → 𝑦 ⊆ 𝑋) |
| 72 | | df-ss 3588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ⊆ 𝑋 ↔ (𝑦 ∩ 𝑋) = 𝑦) |
| 73 | 71, 72 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ 𝑋) = 𝑦) |
| 74 | 73 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ((𝑦 ∩ 𝑋) ⊆ 𝑜 ↔ 𝑦 ⊆ 𝑜)) |
| 75 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝐹 ∈ (Fil‘𝑋)) |
| 76 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑦 ∈ 𝐹) |
| 77 | | elssuni 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽) |
| 78 | 77, 3 | syl6sseqr 3652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑜 ∈ 𝐽 → 𝑜 ⊆ 𝑋) |
| 79 | 78 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑜 ⊆ 𝑋) |
| 80 | 79 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑜 ⊆ 𝑋) |
| 81 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑦 ⊆ 𝑜) |
| 82 | | filss 21657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐹 ∧ 𝑜 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑜)) → 𝑜 ∈ 𝐹) |
| 83 | 75, 76, 80, 81, 82 | syl13anc 1328 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐹 ∈
(Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∧ 𝑦 ⊆ 𝑜) → 𝑜 ∈ 𝐹) |
| 84 | 83 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ⊆ 𝑜 → 𝑜 ∈ 𝐹)) |
| 85 | 74, 84 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ((𝑦 ∩ 𝑋) ⊆ 𝑜 → 𝑜 ∈ 𝐹)) |
| 86 | 67, 85 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → ((𝑦 ∩ (𝑋 ∖ 𝑜)) = ∅ → 𝑜 ∈ 𝐹)) |
| 87 | 86 | necon3bd 2808 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (¬ 𝑜 ∈ 𝐹 → (𝑦 ∩ (𝑋 ∖ 𝑜)) ≠ ∅)) |
| 88 | 66, 87 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) |
| 89 | | ssn0 3976 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∩ (𝑋 ∖ 𝑜)) ⊆ (𝑦 ∩ 𝑧) ∧ (𝑦 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) → (𝑦 ∩ 𝑧) ≠ ∅) |
| 90 | 64, 88, 89 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ (𝑦 ∈ 𝐹 ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) → (𝑦 ∩ 𝑧) ≠ ∅) |
| 91 | 90 | ralrimivva 2971 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} (𝑦 ∩ 𝑧) ≠ ∅) |
| 92 | | filfbas 21652 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
| 93 | 30, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐹 ∈ (fBas‘𝑋)) |
| 94 | 47 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ⊆ 𝑋) |
| 95 | | filtop 21659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
| 96 | 30, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑋 ∈ 𝐹) |
| 97 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑜 = 𝑋 → (𝑜 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹)) |
| 98 | 96, 97 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑜 = 𝑋 → 𝑜 ∈ 𝐹)) |
| 99 | 98 | necon3bd 2808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (¬ 𝑜 ∈ 𝐹 → 𝑜 ≠ 𝑋)) |
| 100 | 65, 99 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝑜 ≠ 𝑋) |
| 101 | | pssdifn0 3944 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑜 ⊆ 𝑋 ∧ 𝑜 ≠ 𝑋) → (𝑋 ∖ 𝑜) ≠ ∅) |
| 102 | 79, 100, 101 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ≠ ∅) |
| 103 | | supfil 21699 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∈ 𝐽 ∧ (𝑋 ∖ 𝑜) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑜) ≠ ∅) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋)) |
| 104 | 33, 94, 102, 103 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋)) |
| 105 | | filfbas 21652 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (Fil‘𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) |
| 107 | | fbunfip 21673 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ↔ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} (𝑦 ∩ 𝑧) ≠ ∅)) |
| 108 | 93, 106, 107 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ↔ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥} (𝑦 ∩ 𝑧) ≠ ∅)) |
| 109 | 91, 108 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) |
| 110 | | fsubbas 21671 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 ∈ 𝐹 → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
| 111 | 96, 110 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ((fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
| 112 | 45, 58, 109, 111 | mpbir3and 1245 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋)) |
| 113 | | ssfg 21676 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((fi‘(𝐹 ∪
{𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
| 114 | 112, 113 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
| 115 | 40, 114 | sstrd 3613 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
| 116 | 115 | unssad 3790 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
| 117 | | fgcl 21682 |
. . . . . . . . . . . . . . . . . . 19
⊢
((fi‘(𝐹 ∪
{𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋)) |
| 118 | 112, 117 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋)) |
| 119 | | sseq2 3627 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → (𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
| 120 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → (𝐽 fClus 𝑔) = (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
| 121 | 120 | eleq2d 2687 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → (𝐴 ∈ (𝐽 fClus 𝑔) ↔ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))))) |
| 122 | 119, 121 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → ((𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))))) |
| 123 | 122 | rspcv 3305 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))))) |
| 124 | 118, 123 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))))) |
| 125 | 116, 124 | mpid 44 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))))) |
| 126 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) |
| 127 | | simplrl 800 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → 𝑜 ∈ 𝐽) |
| 128 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → 𝐴 ∈ 𝑜) |
| 129 | 128 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → 𝐴 ∈ 𝑜) |
| 130 | 115, 56 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝑋 ∖ 𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
| 131 | 130 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → (𝑋 ∖ 𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) |
| 132 | | fclsopni 21819 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) ∧ (𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ∧ (𝑋 ∖ 𝑜) ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) |
| 133 | 126, 127,
129, 131, 132 | syl13anc 1328 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) ∧ 𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥}))))) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅) |
| 134 | 133 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (𝐴 ∈ (𝐽 fClus (𝑋filGen(fi‘(𝐹 ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑜) ⊆ 𝑥})))) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅)) |
| 135 | 125, 134 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝑜 ∩ (𝑋 ∖ 𝑜)) ≠ ∅)) |
| 136 | 135 | necon2bd 2810 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ((𝑜 ∩ (𝑋 ∖ 𝑜)) = ∅ → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)))) |
| 137 | 29, 136 | mpi 20 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ (𝑜 ∈ 𝐽 ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹))) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
| 138 | 137 | anassrs 680 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) ∧ (𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹)) → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔))) |
| 139 | 138 | expr 643 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) ∧ 𝐴 ∈ 𝑜) → (¬ 𝑜 ∈ 𝐹 → ¬ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)))) |
| 140 | 139 | con4d 114 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) ∧ 𝐴 ∈ 𝑜) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜 ∈ 𝐹)) |
| 141 | 140 | ex 450 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) → (𝐴 ∈ 𝑜 → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝑜 ∈ 𝐹))) |
| 142 | 141 | com23 86 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) ∧ 𝑜 ∈ 𝐽) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹))) |
| 143 | 142 | ralrimdva 2969 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹))) |
| 144 | | simprr 796 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 145 | 143, 144 | jctild 566 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹)))) |
| 146 | | simprl 794 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐽 ∈ Top) |
| 147 | 146, 4 | sylib 208 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 148 | | simpl 473 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → 𝐹 ∈ (Fil‘𝑋)) |
| 149 | | flimopn 21779 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹)))) |
| 150 | 147, 148,
149 | syl2anc 693 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹)))) |
| 151 | 145, 150 | sylibrd 249 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋)) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹))) |
| 152 | 151 | ex 450 |
. . . 4
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹)))) |
| 153 | 152 | com23 86 |
. . 3
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim 𝐹)))) |
| 154 | 28, 153 | mpdd 43 |
. 2
⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)) → 𝐴 ∈ (𝐽 fLim 𝐹))) |
| 155 | 15, 154 | impbid2 216 |
1
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)))) |