MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre1 Structured version   Visualization version   GIF version

Theorem ptpjpre1 21374
Description: The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.)
Hypothesis
Ref Expression
ptpjpre1.1 𝑋 = X𝑘𝐴 (𝐹𝑘)
Assertion
Ref Expression
ptpjpre1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Distinct variable groups:   𝑤,𝑘,𝐴   𝑘,𝐹,𝑤   𝑘,𝐼,𝑤   𝑈,𝑘,𝑤   𝑘,𝑉,𝑤   𝑤,𝑋
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ptpjpre1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplrl 800 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → 𝐼𝐴)
2 vex 3203 . . . . . . . . . . 11 𝑤 ∈ V
32elixp 7915 . . . . . . . . . 10 (𝑤X𝑘𝐴 (𝐹𝑘) ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘)))
43simprbi 480 . . . . . . . . 9 (𝑤X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
5 ptpjpre1.1 . . . . . . . . 9 𝑋 = X𝑘𝐴 (𝐹𝑘)
64, 5eleq2s 2719 . . . . . . . 8 (𝑤𝑋 → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
76adantl 482 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
8 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝐼 → (𝑤𝑘) = (𝑤𝐼))
9 fveq2 6191 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
109unieqd 4446 . . . . . . . . 9 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
118, 10eleq12d 2695 . . . . . . . 8 (𝑘 = 𝐼 → ((𝑤𝑘) ∈ (𝐹𝑘) ↔ (𝑤𝐼) ∈ (𝐹𝐼)))
1211rspcv 3305 . . . . . . 7 (𝐼𝐴 → (∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘) → (𝑤𝐼) ∈ (𝐹𝐼)))
131, 7, 12sylc 65 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → (𝑤𝐼) ∈ (𝐹𝐼))
14 eqid 2622 . . . . . 6 (𝑤𝑋 ↦ (𝑤𝐼)) = (𝑤𝑋 ↦ (𝑤𝐼))
1513, 14fmptd 6385 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼))
16 ffn 6045 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼) → (𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋)
17 elpreima 6337 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋 → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
1815, 16, 173syl 18 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
19 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝐼) = (𝑧𝐼))
20 fvex 6201 . . . . . . . . 9 (𝑧𝐼) ∈ V
2119, 14, 20fvmpt 6282 . . . . . . . 8 (𝑧𝑋 → ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) = (𝑧𝐼))
2221eleq1d 2686 . . . . . . 7 (𝑧𝑋 → (((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈 ↔ (𝑧𝐼) ∈ 𝑈))
2322pm5.32i 669 . . . . . 6 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈))
245eleq2i 2693 . . . . . . . . 9 (𝑧𝑋𝑧X𝑘𝐴 (𝐹𝑘))
25 vex 3203 . . . . . . . . . 10 𝑧 ∈ V
2625elixp 7915 . . . . . . . . 9 (𝑧X𝑘𝐴 (𝐹𝑘) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2724, 26bitri 264 . . . . . . . 8 (𝑧𝑋 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2827anbi1i 731 . . . . . . 7 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ ((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈))
29 anass 681 . . . . . . 7 (((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
3028, 29bitri 264 . . . . . 6 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
3123, 30bitri 264 . . . . 5 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
32 simprl 794 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝐼) ∈ 𝑈)
33 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → (𝑧𝑘) = (𝑧𝐼))
34 iftrue 4092 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = 𝑈)
3533, 34eleq12d 2695 . . . . . . . . . . . . 13 (𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝐼) ∈ 𝑈))
3632, 35syl5ibrcom 237 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
37 simprr 796 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ (𝐹𝑘))
38 iffalse 4095 . . . . . . . . . . . . . 14 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = (𝐹𝑘))
3938eleq2d 2687 . . . . . . . . . . . . 13 𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝑘) ∈ (𝐹𝑘)))
4037, 39syl5ibrcom 237 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (¬ 𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4136, 40pm2.61d 170 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
4241expr 643 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → ((𝑧𝑘) ∈ (𝐹𝑘) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4342ralimdv 2963 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4443expimpd 629 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (((𝑧𝐼) ∈ 𝑈 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4544ancomsd 470 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
46 elssuni 4467 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐹𝐼) → 𝑈 (𝐹𝐼))
4746ad2antll 765 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 (𝐹𝐼))
4834, 10sseq12d 3634 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘) ↔ 𝑈 (𝐹𝐼)))
4947, 48syl5ibrcom 237 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘)))
50 ssid 3624 . . . . . . . . . . . 12 (𝐹𝑘) ⊆ (𝐹𝑘)
5138, 50syl6eqss 3655 . . . . . . . . . . 11 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5249, 51pm2.61d1 171 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5352sseld 3602 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝑘) ∈ (𝐹𝑘)))
5453ralimdv 2963 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
5535rspcv 3305 . . . . . . . . 9 (𝐼𝐴 → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5655ad2antrl 764 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5754, 56jcad 555 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
5845, 57impbid 202 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
5958anbi2d 740 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6031, 59syl5bb 272 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6118, 60bitrd 268 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6225elixp 7915 . . 3 (𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6361, 62syl6bbr 278 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ 𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6463eqrdv 2620 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  ifcif 4086   cuni 4436  cmpt 4729  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  Xcixp 7908  Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ixp 7909
This theorem is referenced by:  ptpjpre2  21383  ptbasfi  21384
  Copyright terms: Public domain W3C validator