MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopuni Structured version   Visualization version   GIF version

Theorem qtopuni 21505
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtoptop.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopuni ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))

Proof of Theorem qtopuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . . . 5 𝑌𝑌
21a1i 11 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌𝑌)
3 fof 6115 . . . . . . 7 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
43adantl 482 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝐹:𝑋𝑌)
5 fimacnv 6347 . . . . . 6 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
64, 5syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) = 𝑋)
7 qtoptop.1 . . . . . . 7 𝑋 = 𝐽
87topopn 20711 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
98adantr 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑋𝐽)
106, 9eqeltrd 2701 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐹𝑌) ∈ 𝐽)
117elqtop2 21504 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑌 ∈ (𝐽 qTop 𝐹) ↔ (𝑌𝑌 ∧ (𝐹𝑌) ∈ 𝐽)))
122, 10, 11mpbir2and 957 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 ∈ (𝐽 qTop 𝐹))
13 elssuni 4467 . . 3 (𝑌 ∈ (𝐽 qTop 𝐹) → 𝑌 (𝐽 qTop 𝐹))
1412, 13syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 (𝐽 qTop 𝐹))
157elqtop2 21504 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
16 simpl 473 . . . . . 6 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥𝑌)
17 selpw 4165 . . . . . 6 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1816, 17sylibr 224 . . . . 5 ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) → 𝑥 ∈ 𝒫 𝑌)
1915, 18syl6bi 243 . . . 4 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) → 𝑥 ∈ 𝒫 𝑌))
2019ssrdv 3609 . . 3 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝒫 𝑌)
21 sspwuni 4611 . . 3 ((𝐽 qTop 𝐹) ⊆ 𝒫 𝑌 (𝐽 qTop 𝐹) ⊆ 𝑌)
2220, 21sylib 208 . 2 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ⊆ 𝑌)
2314, 22eqssd 3620 1 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574  𝒫 cpw 4158   cuni 4436  ccnv 5113  cima 5117  wf 5884  ontowfo 5886  (class class class)co 6650   qTop cqtop 16163  Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167  df-top 20699
This theorem is referenced by:  qtoptopon  21507  qtopcmplem  21510  qtopkgen  21513  qtopt1  29902  qtophaus  29903  circtopn  29904
  Copyright terms: Public domain W3C validator