MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.2uz Structured version   Visualization version   GIF version

Theorem r19.2uz 14091
Description: A version of r19.2z 4060 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.2uz (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 11697 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2 uzid 11702 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
3 ne0i 3921 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
41, 2, 33syl 18 . . . . 5 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ≠ ∅)
5 rexuz3.1 . . . . 5 𝑍 = (ℤ𝑀)
64, 5eleq2s 2719 . . . 4 (𝑗𝑍 → (ℤ𝑗) ≠ ∅)
7 r19.2z 4060 . . . 4 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
86, 7sylan 488 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘 ∈ (ℤ𝑗)𝜑)
95uztrn2 11705 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
109ex 450 . . . . . 6 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
1110anim1d 588 . . . . 5 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) ∧ 𝜑) → (𝑘𝑍𝜑)))
1211reximdv2 3014 . . . 4 (𝑗𝑍 → (∃𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑))
1312imp 445 . . 3 ((𝑗𝑍 ∧ ∃𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
148, 13syldan 487 . 2 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∃𝑘𝑍 𝜑)
1514rexlimiva 3028 1 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑘𝑍 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  c0 3915  cfv 5888  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688
This theorem is referenced by:  lmcls  21106  1stccnp  21265  iscmet3lem1  23089  iscmet3lem2  23090  uniioombllem6  23356  ulmcau  24149  ulmbdd  24152  ulmcn  24153  ulmdvlem3  24156  iblulm  24161
  Copyright terms: Public domain W3C validator