MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1id Structured version   Visualization version   GIF version

Theorem rankr1id 8725
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1id (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)

Proof of Theorem rankr1id
StepHypRef Expression
1 ssid 3624 . . . 4 (𝑅1𝐴) ⊆ (𝑅1𝐴)
2 fvex 6201 . . . . . . . 8 (𝑅1𝐴) ∈ V
32pwid 4174 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
4 r1sucg 8632 . . . . . . 7 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
53, 4syl5eleqr 2708 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
6 r1elwf 8659 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
75, 6syl 17 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1 “ On))
8 rankr1bg 8666 . . . . 5 (((𝑅1𝐴) ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
97, 8mpancom 703 . . . 4 (𝐴 ∈ dom 𝑅1 → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
101, 9mpbii 223 . . 3 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) ⊆ 𝐴)
11 rankonid 8692 . . . . 5 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1211biimpi 206 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴)
13 onssr1 8694 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
14 rankssb 8711 . . . . 5 ((𝑅1𝐴) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴))))
157, 13, 14sylc 65 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴)))
1612, 15eqsstr3d 3640 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (rank‘(𝑅1𝐴)))
1710, 16eqssd 3620 . 2 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) = 𝐴)
18 id 22 . . 3 ((rank‘(𝑅1𝐴)) = 𝐴 → (rank‘(𝑅1𝐴)) = 𝐴)
19 rankdmr1 8664 . . 3 (rank‘(𝑅1𝐴)) ∈ dom 𝑅1
2018, 19syl6eqelr 2710 . 2 ((rank‘(𝑅1𝐴)) = 𝐴𝐴 ∈ dom 𝑅1)
2117, 20impbii 199 1 (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990  wss 3574  𝒫 cpw 4158   cuni 4436  dom cdm 5114  cima 5117  Oncon0 5723  suc csuc 5725  cfv 5888  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankuni  8726
  Copyright terms: Public domain W3C validator