![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankdmr1 | Structured version Visualization version GIF version |
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankdmr1 | ⊢ (rank‘𝐴) ∈ dom 𝑅1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankidb 8663 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
2 | elfvdm 6220 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1) |
4 | r1funlim 8629 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
5 | 4 | simpri 478 | . . . 4 ⊢ Lim dom 𝑅1 |
6 | limsuc 7049 | . . . 4 ⊢ (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1) |
8 | 3, 7 | sylibr 224 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1) |
9 | rankvaln 8662 | . . 3 ⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∅) | |
10 | limomss 7070 | . . . . 5 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
11 | 5, 10 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom 𝑅1 |
12 | peano1 7085 | . . . 4 ⊢ ∅ ∈ ω | |
13 | 11, 12 | sselii 3600 | . . 3 ⊢ ∅ ∈ dom 𝑅1 |
14 | 9, 13 | syl6eqel 2709 | . 2 ⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1) |
15 | 8, 14 | pm2.61i 176 | 1 ⊢ (rank‘𝐴) ∈ dom 𝑅1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∈ wcel 1990 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 dom cdm 5114 “ cima 5117 Oncon0 5723 Lim wlim 5724 suc csuc 5725 Fun wfun 5882 ‘cfv 5888 ωcom 7065 𝑅1cr1 8625 rankcrnk 8626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-r1 8627 df-rank 8628 |
This theorem is referenced by: r1rankidb 8667 pwwf 8670 unwf 8673 uniwf 8682 rankr1c 8684 rankelb 8687 rankval3b 8689 rankonid 8692 rankssb 8711 rankr1id 8725 |
Copyright terms: Public domain | W3C validator |