![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simplr1 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1067 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | adantr 481 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: soltmin 5532 frfi 8205 wemappo 8454 iccsplit 12305 ccatswrd 13456 sqrmo 13992 pcdvdstr 15580 vdwlem12 15696 mreexexlem4d 16307 iscatd2 16342 oppccomfpropd 16387 resssetc 16742 resscatc 16755 mod1ile 17105 mod2ile 17106 prdsmndd 17323 grprcan 17455 prdsringd 18612 lmodprop2d 18925 lssintcl 18964 prdslmodd 18969 islmhm2 19038 islbs3 19155 ofco2 20257 mdetmul 20429 restopnb 20979 regsep2 21180 iunconn 21231 blsscls2 22309 met2ndci 22327 xrsblre 22614 legso 25494 colline 25544 tglowdim2ln 25546 cgrahl 25718 f1otrg 25751 f1otrge 25752 ax5seglem4 25812 ax5seglem5 25813 axcontlem4 25847 axcontlem8 25851 axcontlem9 25852 axcontlem10 25853 eengtrkg 25865 rusgrnumwwlks 26869 frgr3v 27139 submomnd 29710 ogrpaddltbi 29719 erdszelem8 31180 nosupbnd1lem5 31858 conway 31910 btwncomim 32120 btwnswapid 32124 broutsideof3 32233 outsideoftr 32236 outsidele 32239 isbasisrelowllem1 33203 isbasisrelowllem2 33204 cvrletrN 34560 ltltncvr 34709 atcvrj2b 34718 2at0mat0 34811 paddasslem11 35116 pmod1i 35134 lautcvr 35378 tendoplass 36071 tendodi1 36072 tendodi2 36073 cdlemk34 36198 mendassa 37764 3adantlr3 39200 ssinc 39264 ssdec 39265 ioondisj2 39714 ioondisj1 39715 subsubelfzo0 41336 ply1mulgsumlem2 42175 lincresunit3lem2 42269 |
Copyright terms: Public domain | W3C validator |