MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restnlly Structured version   Visualization version   GIF version

Theorem restnlly 21285
Description: If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
Assertion
Ref Expression
restnlly (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restnlly
Dummy variables 𝑘 𝑠 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 21276 . . . . . 6 (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Top)
21adantl 482 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Top)
3 nlly2i 21279 . . . . . . . . 9 ((𝑘 ∈ 𝑛-Locally 𝐴𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
433adant1l 1318 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
5 simprl 794 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑘)
6 simprr2 1110 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑠)
7 simplr 792 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑦)
87elpwid 4170 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠𝑦)
96, 8sstrd 3613 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑦)
10 selpw 4165 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
119, 10sylibr 224 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝒫 𝑦)
125, 11elind 3798 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ∩ 𝒫 𝑦))
13 simprr1 1109 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑢𝑥)
14 simpll1 1100 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝜑𝑘 ∈ 𝑛-Locally 𝐴))
1514simprd 479 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑘 ∈ 𝑛-Locally 𝐴)
1615, 1syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑘 ∈ Top)
17 restabs 20969 . . . . . . . . . . . . . 14 ((𝑘 ∈ Top ∧ 𝑥𝑠𝑠 ∈ 𝒫 𝑦) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
1816, 6, 7, 17syl3anc 1326 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
19 simprr3 1111 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑠) ∈ 𝐴)
2014simpld 475 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝜑)
21 restlly.1 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
2221expr 643 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
2322ralrimiva 2966 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
2420, 23syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
25 df-ss 3588 . . . . . . . . . . . . . . . 16 (𝑥𝑠 ↔ (𝑥𝑠) = 𝑥)
266, 25sylib 208 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) = 𝑥)
27 elrestr 16089 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ Top ∧ 𝑠 ∈ 𝒫 𝑦𝑥𝑘) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2816, 7, 5, 27syl3anc 1326 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2926, 28eqeltrrd 2702 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘t 𝑠))
30 eleq2 2690 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → (𝑥𝑗𝑥 ∈ (𝑘t 𝑠)))
31 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑘t 𝑠) → (𝑗t 𝑥) = ((𝑘t 𝑠) ↾t 𝑥))
3231eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → ((𝑗t 𝑥) ∈ 𝐴 ↔ ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴))
3330, 32imbi12d 334 . . . . . . . . . . . . . . 15 (𝑗 = (𝑘t 𝑠) → ((𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴) ↔ (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)))
3433rspcv 3305 . . . . . . . . . . . . . 14 ((𝑘t 𝑠) ∈ 𝐴 → (∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴) → (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)))
3519, 24, 29, 34syl3c 66 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)
3618, 35eqeltrrd 2702 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑥) ∈ 𝐴)
3712, 13, 36jca32 558 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
3837ex 450 . . . . . . . . . 10 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴)) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))))
3938reximdv2 3014 . . . . . . . . 9 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → (∃𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
4039rexlimdva 3031 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → (∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
414, 40mpd 15 . . . . . . 7 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
42413expb 1266 . . . . . 6 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ (𝑦𝑘𝑢𝑦)) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
4342ralrimivva 2971 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
44 islly 21271 . . . . 5 (𝑘 ∈ Locally 𝐴 ↔ (𝑘 ∈ Top ∧ ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
452, 43, 44sylanbrc 698 . . . 4 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Locally 𝐴)
4645ex 450 . . 3 (𝜑 → (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Locally 𝐴))
4746ssrdv 3609 . 2 (𝜑 → 𝑛-Locally 𝐴 ⊆ Locally 𝐴)
48 llyssnlly 21281 . . 3 Locally 𝐴 ⊆ 𝑛-Locally 𝐴
4948a1i 11 . 2 (𝜑 → Locally 𝐴 ⊆ 𝑛-Locally 𝐴)
5047, 49eqssd 3620 1 (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158  (class class class)co 6650  t crest 16081  Topctop 20698  Locally clly 21267  𝑛-Locally cnlly 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083  df-top 20699  df-nei 20902  df-lly 21269  df-nlly 21270
This theorem is referenced by:  loclly  21290  hausnlly  21296
  Copyright terms: Public domain W3C validator