MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subislly Structured version   Visualization version   GIF version

Theorem subislly 21284
Description: The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
subislly ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐵,𝑥,𝑦   𝑢,𝐽,𝑥,𝑦   𝑢,𝑉,𝑥,𝑦

Proof of Theorem subislly
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttop 20964 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝐽t 𝐵) ∈ Top)
2 islly 21271 . . . 4 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
32baib 944 . . 3 ((𝐽t 𝐵) ∈ Top → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
41, 3syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
5 vex 3203 . . . . 5 𝑥 ∈ V
65inex1 4799 . . . 4 (𝑥𝐵) ∈ V
76a1i 11 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑥𝐽) → (𝑥𝐵) ∈ V)
8 elrest 16088 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑧 ∈ (𝐽t 𝐵) ↔ ∃𝑥𝐽 𝑧 = (𝑥𝐵)))
9 simpr 477 . . . . 5 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝑧 = (𝑥𝐵))
109raleqdv 3144 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
11 elin 3796 . . . . . . . . 9 (𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧) ↔ (𝑤 ∈ (𝐽t 𝐵) ∧ 𝑤 ∈ 𝒫 𝑧))
1211anbi1i 731 . . . . . . . 8 ((𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧) ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ((𝑤 ∈ (𝐽t 𝐵) ∧ 𝑤 ∈ 𝒫 𝑧) ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
13 anass 681 . . . . . . . 8 (((𝑤 ∈ (𝐽t 𝐵) ∧ 𝑤 ∈ 𝒫 𝑧) ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ (𝑤 ∈ (𝐽t 𝐵) ∧ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴))))
1412, 13bitri 264 . . . . . . 7 ((𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧) ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ (𝑤 ∈ (𝐽t 𝐵) ∧ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴))))
1514rexbii2 3039 . . . . . 6 (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
16 vex 3203 . . . . . . . . 9 𝑢 ∈ V
1716inex1 4799 . . . . . . . 8 (𝑢𝐵) ∈ V
1817a1i 11 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑢𝐽) → (𝑢𝐵) ∈ V)
19 elrest 16088 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
2019ad2antrr 762 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝑤 ∈ (𝐽t 𝐵) ↔ ∃𝑢𝐽 𝑤 = (𝑢𝐵)))
21 3anass 1042 . . . . . . . 8 ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ (𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)))
22 simpr 477 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑤 = (𝑢𝐵))
23 simpllr 799 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑧 = (𝑥𝐵))
2422, 23sseq12d 3634 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤𝑧 ↔ (𝑢𝐵) ⊆ (𝑥𝐵)))
25 selpw 4165 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
26 inss2 3834 . . . . . . . . . . . 12 (𝑢𝐵) ⊆ 𝐵
2726biantru 526 . . . . . . . . . . 11 ((𝑢𝐵) ⊆ 𝑥 ↔ ((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵))
28 ssin 3835 . . . . . . . . . . 11 (((𝑢𝐵) ⊆ 𝑥 ∧ (𝑢𝐵) ⊆ 𝐵) ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
2927, 28bitri 264 . . . . . . . . . 10 ((𝑢𝐵) ⊆ 𝑥 ↔ (𝑢𝐵) ⊆ (𝑥𝐵))
3024, 25, 293bitr4g 303 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑤 ∈ 𝒫 𝑧 ↔ (𝑢𝐵) ⊆ 𝑥))
3122eleq2d 2687 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦 ∈ (𝑢𝐵)))
32 inss2 3834 . . . . . . . . . . . . 13 (𝑥𝐵) ⊆ 𝐵
33 simplr 792 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦 ∈ (𝑥𝐵))
3432, 33sseldi 3601 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝑦𝐵)
3534biantrud 528 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢 ↔ (𝑦𝑢𝑦𝐵)))
36 elin 3796 . . . . . . . . . . 11 (𝑦 ∈ (𝑢𝐵) ↔ (𝑦𝑢𝑦𝐵))
3735, 36syl6bbr 278 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑢𝑦 ∈ (𝑢𝐵)))
3831, 37bitr4d 271 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑦𝑤𝑦𝑢))
3922oveq2d 6666 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = ((𝐽t 𝐵) ↾t (𝑢𝐵)))
40 simp-4l 806 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐽 ∈ Top)
4126a1i 11 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (𝑢𝐵) ⊆ 𝐵)
42 simplr 792 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → 𝐵𝑉)
4342ad2antrr 762 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → 𝐵𝑉)
44 restabs 20969 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑢𝐵) ⊆ 𝐵𝐵𝑉) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4540, 41, 43, 44syl3anc 1326 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t (𝑢𝐵)) = (𝐽t (𝑢𝐵)))
4639, 45eqtrd 2656 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝐽t 𝐵) ↾t 𝑤) = (𝐽t (𝑢𝐵)))
4746eleq1d 2686 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → (((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴 ↔ (𝐽t (𝑢𝐵)) ∈ 𝐴))
4830, 38, 473anbi123d 1399 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
4921, 48syl5bbr 274 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) ∧ 𝑤 = (𝑢𝐵)) → ((𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
5018, 20, 49rexxfr2d 4883 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ (𝐽t 𝐵)(𝑤 ∈ 𝒫 𝑧 ∧ (𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴)) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
5115, 50syl5bb 272 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) ∧ 𝑦 ∈ (𝑥𝐵)) → (∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
5251ralbidva 2985 . . . 4 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦 ∈ (𝑥𝐵)∃𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
5310, 52bitrd 268 . . 3 (((𝐽 ∈ Top ∧ 𝐵𝑉) ∧ 𝑧 = (𝑥𝐵)) → (∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
547, 8, 53ralxfr2d 4882 . 2 ((𝐽 ∈ Top ∧ 𝐵𝑉) → (∀𝑧 ∈ (𝐽t 𝐵)∀𝑦𝑧𝑤 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑧)(𝑦𝑤 ∧ ((𝐽t 𝐵) ↾t 𝑤) ∈ 𝐴) ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
554, 54bitrd 268 1 ((𝐽 ∈ Top ∧ 𝐵𝑉) → ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥𝐽𝑦 ∈ (𝑥𝐵)∃𝑢𝐽 ((𝑢𝐵) ⊆ 𝑥𝑦𝑢 ∧ (𝐽t (𝑢𝐵)) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158  (class class class)co 6650  t crest 16081  Topctop 20698  Locally clly 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-lly 21269
This theorem is referenced by:  iccllysconn  31232
  Copyright terms: Public domain W3C validator