![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 13-Nov-2004.) |
Ref | Expression |
---|---|
reubidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1843 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | reubidva.1 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | reubida 3124 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∃!wreu 2914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 df-reu 2919 |
This theorem is referenced by: reubidv 3126 reuxfr2d 4891 reuxfrd 4893 exfo 6377 f1ofveu 6645 zmax 11785 zbtwnre 11786 rebtwnz 11787 icoshftf1o 12295 divalgb 15127 1arith2 15632 ply1divalg2 23898 frgr2wwlkeu 27191 numclwwlk2lem1 27235 numclwlk2lem2f1o 27238 pjhtheu2 28275 reuxfr3d 29329 reuxfr4d 29330 xrsclat 29680 xrmulc1cn 29976 poimirlem25 33434 hdmap14lem14 37173 |
Copyright terms: Public domain | W3C validator |