MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1 Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1 27235
Description: In a friendship graph, for each walk of length 𝑛 starting at a fixed vertex 𝑣 and ending not at this vertex, there is a unique vertex so that the walk extended by an edge to this vertex and an edge from this vertex to the first vertex of the walk is a value of operation 𝐻. If the walk is represented as a word, it is sufficient to add one vertex to the word to obtain the closed walk contained in the value of operation 𝐻, since in a word representing a closed walk the starting vertex is not repeated at the end. This theorem generally holds only for Friendship Graphs, because these guarantee that for the first and last vertex there is a (unique) third vertex "in between". (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
Assertion
Ref Expression
numclwwlk2lem1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑣,𝑊,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑊(𝑛)

Proof of Theorem numclwwlk2lem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 numclwwlk.q . . . . . 6 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
31, 2numclwwlkovq 27232 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
433adant1 1079 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
54eleq2d 2687 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
6 fveq1 6190 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
76eqeq1d 2624 . . . . 5 (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋))
8 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → ( lastS ‘𝑤) = ( lastS ‘𝑊))
98neeq1d 2853 . . . . 5 (𝑤 = 𝑊 → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ 𝑋))
107, 9anbi12d 747 . . . 4 (𝑤 = 𝑊 → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)))
1110elrab 3363 . . 3 (𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)))
125, 11syl6bb 276 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))))
13 simpl1 1064 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝐺 ∈ FriendGraph )
14 eqid 2622 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
151, 14wwlknp 26734 . . . . . . . . . . . 12 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
16 peano2nn 11032 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1716adantl 482 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
18 simpl 473 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))
1917, 18jca 554 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))))
2019ex 450 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))))
21203adant3 1081 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))))
2215, 21syl 17 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))))
23 lswlgt0cl 13356 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))) → ( lastS ‘𝑊) ∈ 𝑉)
2422, 23syl6 35 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → ( lastS ‘𝑊) ∈ 𝑉))
2524adantr 481 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑁 ∈ ℕ → ( lastS ‘𝑊) ∈ 𝑉))
2625com12 32 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ∈ 𝑉))
27263ad2ant3 1084 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ∈ 𝑉))
2827imp 445 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ( lastS ‘𝑊) ∈ 𝑉)
29 eleq1 2689 . . . . . . . . . . 11 ((𝑊‘0) = 𝑋 → ((𝑊‘0) ∈ 𝑉𝑋𝑉))
3029biimprd 238 . . . . . . . . . 10 ((𝑊‘0) = 𝑋 → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3130ad2antrl 764 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3231com12 32 . . . . . . . 8 (𝑋𝑉 → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
33323ad2ant2 1083 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
3433imp 445 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (𝑊‘0) ∈ 𝑉)
35 neeq2 2857 . . . . . . . . . 10 (𝑋 = (𝑊‘0) → (( lastS ‘𝑊) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ (𝑊‘0)))
3635eqcoms 2630 . . . . . . . . 9 ((𝑊‘0) = 𝑋 → (( lastS ‘𝑊) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ (𝑊‘0)))
3736biimpa 501 . . . . . . . 8 (((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋) → ( lastS ‘𝑊) ≠ (𝑊‘0))
3837adantl 482 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ≠ (𝑊‘0))
3938adantl 482 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ( lastS ‘𝑊) ≠ (𝑊‘0))
4028, 34, 393jca 1242 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (( lastS ‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)))
411, 14frcond2 27131 . . . . 5 (𝐺 ∈ FriendGraph → ((( lastS ‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)) → ∃!𝑣𝑉 ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))))
4213, 40, 41sylc 65 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
43 simpl 473 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4443ad2antlr 763 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
45 simpr 477 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣𝑉)
46 nnnn0 11299 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
47463ad2ant3 1084 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
4847ad2antrr 762 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑁 ∈ ℕ0)
4944, 45, 483jca 1242 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0))
501, 14wwlksext2clwwlk 26924 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) → (({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
5150imp 445 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) ∧ ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
5249, 51sylan 488 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
531wwlknbp 26733 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
5453simp3d 1075 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ Word 𝑉)
5554ad2antrl 764 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝑊 ∈ Word 𝑉)
5655ad2antrr 762 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑊 ∈ Word 𝑉)
5745adantr 481 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑣𝑉)
58 2z 11409 . . . . . . . . . . 11 2 ∈ ℤ
59 nn0pzuz 11745 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
6046, 58, 59sylancl 694 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
61603ad2ant3 1084 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑁 + 2) ∈ (ℤ‘2))
6261ad3antrrr 766 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑁 + 2) ∈ (ℤ‘2))
63 simpr 477 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
641, 14clwwlksext2edg 26923 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑣𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6556, 57, 62, 63, 64syl31anc 1329 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6652, 65impbida 877 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
6747adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝑁 ∈ ℕ0)
681eleq2i 2693 . . . . . . . . . . . 12 (𝑣𝑉𝑣 ∈ (Vtx‘𝐺))
6968biimpi 206 . . . . . . . . . . 11 (𝑣𝑉𝑣 ∈ (Vtx‘𝐺))
7067, 69anim12i 590 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑁 ∈ ℕ0𝑣 ∈ (Vtx‘𝐺)))
7137anim2i 593 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)))
7271ad2antlr 763 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)))
73 clwwlkextfrlem1 27208 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑣 ∈ (Vtx‘𝐺)) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑊) ≠ (𝑊‘0))) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
7470, 72, 73syl2anc 693 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
75 eqeq2 2633 . . . . . . . . . . . . 13 (𝑋 = (𝑊‘0) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7675eqcoms 2630 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7776ad2antrl 764 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7877ad2antlr 763 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7974simpld 475 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0))
8079neeq2d 2854 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
8178, 80anbi12d 747 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0))))
8274, 81mpbird 247 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
83 nncn 11028 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
84 2cnd 11093 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 2 ∈ ℂ)
8583, 84pncand 10393 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
86853ad2ant3 1084 . . . . . . . . . . . 12 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 2) − 2) = 𝑁)
8786ad2antrr 762 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑁 + 2) − 2) = 𝑁)
8887fveq2d 6195 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁))
8988neeq1d 2853 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
9089anbi2d 740 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
9182, 90mpbird 247 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
9291biantrud 528 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))))
93 2nn 11185 . . . . . . . . . . . . 13 2 ∈ ℕ
94 nnaddcl 11042 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (𝑁 + 2) ∈ ℕ)
9593, 94mpan2 707 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
9695anim2i 593 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
97963adant1 1079 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
9897ad2antrr 762 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
99 numclwwlk.f . . . . . . . . . 10 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
100 numclwwlk.h . . . . . . . . . 10 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
1011, 2, 99, 100numclwwlkovh 27234 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
10298, 101syl 17 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
103102eleq2d 2687 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
104 fveq1 6190 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘0) = ((𝑊 ++ ⟨“𝑣”⟩)‘0))
105104eqeq1d 2624 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋))
106 fveq1 6190 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)))
107106, 104neeq12d 2855 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
108105, 107anbi12d 747 . . . . . . . 8 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
109108elrab 3363 . . . . . . 7 ((𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
110103, 109syl6rbb 277 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11166, 92, 1103bitrd 294 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
112111reubidva 3125 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (∃!𝑣𝑉 ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11342, 112mpbid 222 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
114113ex 450 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11512, 114sylbid 230 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  ∃!wreu 2914  {crab 2916  Vcvv 3200  {cpr 4179  cfv 5888  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293  ⟨“cs1 13294  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878  df-frgr 27121
This theorem is referenced by:  numclwlk2lem2f1o  27238
  Copyright terms: Public domain W3C validator