![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rebtwnz | Structured version Visualization version GIF version |
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
rebtwnz | ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 10344 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | zbtwnre 11786 | . . 3 ⊢ (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1))) |
4 | znegcl 11412 | . . . 4 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
5 | znegcl 11412 | . . . . 5 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
6 | zcn 11382 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
7 | zcn 11382 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
8 | negcon2 10334 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) | |
9 | 6, 7, 8 | syl2an 494 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥 ↔ 𝑥 = -𝑦)) |
10 | 5, 9 | reuhyp 4896 | . . . 4 ⊢ (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥) |
11 | breq2 4657 | . . . . 5 ⊢ (𝑦 = -𝑥 → (-𝐴 ≤ 𝑦 ↔ -𝐴 ≤ -𝑥)) | |
12 | breq1 4656 | . . . . 5 ⊢ (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1))) | |
13 | 11, 12 | anbi12d 747 | . . . 4 ⊢ (𝑦 = -𝑥 → ((-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
14 | 4, 10, 13 | reuxfr 4894 | . . 3 ⊢ (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))) |
15 | zre 11381 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
16 | leneg 10531 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) | |
17 | 16 | ancoms 469 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
18 | peano2rem 10348 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ) | |
19 | ltneg 10528 | . . . . . . . . 9 ⊢ (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) | |
20 | 18, 19 | sylan 488 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1))) |
21 | 1re 10039 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
22 | ltsubadd 10498 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) | |
23 | 21, 22 | mp3an2 1412 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ 𝐴 < (𝑥 + 1))) |
24 | recn 10026 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
25 | ax-1cn 9994 | . . . . . . . . . . 11 ⊢ 1 ∈ ℂ | |
26 | negsubdi 10337 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1)) | |
27 | 24, 25, 26 | sylancl 694 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1)) |
28 | 27 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1)) |
29 | 28 | breq2d 4665 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1))) |
30 | 20, 23, 29 | 3bitr3d 298 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1))) |
31 | 17, 30 | anbi12d 747 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
32 | 15, 31 | sylan2 491 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))) |
33 | 32 | bicomd 213 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
34 | 33 | reubidva 3125 | . . 3 ⊢ (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
35 | 14, 34 | syl5bb 272 | . 2 ⊢ (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴 ≤ 𝑦 ∧ 𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
36 | 3, 35 | mpbid 222 | 1 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃!wreu 2914 class class class wbr 4653 (class class class)co 6650 ℂcc 9934 ℝcr 9935 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 − cmin 10266 -cneg 10267 ℤcz 11377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 |
This theorem is referenced by: flcl 12596 fllelt 12598 flflp1 12608 flbi 12617 ltflcei 33397 |
Copyright terms: Public domain | W3C validator |