Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrmulc1cn Structured version   Visualization version   GIF version

Theorem xrmulc1cn 29976
Description: The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
xrmulc1cn.k 𝐽 = (ordTop‘ ≤ )
xrmulc1cn.f 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
xrmulc1cn.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
xrmulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrmulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 letsr 17227 . . . 4 ≤ ∈ TosetRel
21a1i 11 . . 3 (𝜑 → ≤ ∈ TosetRel )
3 simpr 477 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
4 xrmulc1cn.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
54adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ+)
65rpxrd 11873 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
73, 6xmulcld 12132 . . . . . 6 ((𝜑𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) ∈ ℝ*)
87ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ*)
9 simpr 477 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
104adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
1110rpred 11872 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ)
1210rpne0d 11877 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ≠ 0)
13 xreceu 29630 . . . . . . . 8 ((𝑦 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
149, 11, 12, 13syl3anc 1326 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
15 eqcom 2629 . . . . . . . . 9 (𝑦 = (𝑥 ·e 𝐶) ↔ (𝑥 ·e 𝐶) = 𝑦)
16 simpr 477 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
176adantlr 751 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
18 xmulcom 12096 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
1916, 17, 18syl2anc 693 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
2019eqeq1d 2624 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝑥 ·e 𝐶) = 𝑦 ↔ (𝐶 ·e 𝑥) = 𝑦))
2115, 20syl5bb 272 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑦 = (𝑥 ·e 𝐶) ↔ (𝐶 ·e 𝑥) = 𝑦))
2221reubidva 3125 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶) ↔ ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦))
2314, 22mpbird 247 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
2423ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
25 xrmulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
2625f1ompt 6382 . . . . 5 (𝐹:ℝ*1-1-onto→ℝ* ↔ (∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶)))
278, 24, 26sylanbrc 698 . . . 4 (𝜑𝐹:ℝ*1-1-onto→ℝ*)
28 simplr 792 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
29 simpr 477 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
304ad2antrr 762 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
31 xlemul1 12120 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝐶 ∈ ℝ+) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
3228, 29, 30, 31syl3anc 1326 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
33 ovex 6678 . . . . . . . . 9 (𝑥 ·e 𝐶) ∈ V
3425fvmpt2 6291 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥 ·e 𝐶) ∈ V) → (𝐹𝑥) = (𝑥 ·e 𝐶))
3528, 33, 34sylancl 694 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑥) = (𝑥 ·e 𝐶))
36 oveq1 6657 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovex 6678 . . . . . . . . . 10 (𝑦 ·e 𝐶) ∈ V
3836, 25, 37fvmpt 6282 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝐹𝑦) = (𝑦 ·e 𝐶))
3938adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑦) = (𝑦 ·e 𝐶))
4035, 39breq12d 4666 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
4132, 40bitr4d 271 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4241ralrimiva 2966 . . . . 5 ((𝜑𝑥 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4342ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
44 df-isom 5897 . . . 4 (𝐹 Isom ≤ , ≤ (ℝ*, ℝ*) ↔ (𝐹:ℝ*1-1-onto→ℝ* ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦))))
4527, 43, 44sylanbrc 698 . . 3 (𝜑𝐹 Isom ≤ , ≤ (ℝ*, ℝ*))
46 ledm 17224 . . . 4 * = dom ≤
4746, 46ordthmeolem 21604 . . 3 (( ≤ ∈ TosetRel ∧ ≤ ∈ TosetRel ∧ 𝐹 Isom ≤ , ≤ (ℝ*, ℝ*)) → 𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
482, 2, 45, 47syl3anc 1326 . 2 (𝜑𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
49 xrmulc1cn.k . . 3 𝐽 = (ordTop‘ ≤ )
5049, 49oveq12i 6662 . 2 (𝐽 Cn 𝐽) = ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ ))
5148, 50syl6eleqr 2712 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  ∃!wreu 2914  Vcvv 3200   class class class wbr 4653  cmpt 4729  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650  cr 9935  0cc0 9936  *cxr 10073  cle 10075  +crp 11832   ·e cxmu 11945  ordTopcordt 16159   TosetRel ctsr 17199   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833  df-xneg 11946  df-xmul 11948  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  xrge0mulc1cn  29987
  Copyright terms: Public domain W3C validator