| Step | Hyp | Ref
| Expression |
| 1 | | renegcl 10344 |
. . 3
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
| 2 | | zmin 11784 |
. . 3
⊢ (-𝐴 ∈ ℝ →
∃!𝑧 ∈ ℤ
(-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤))) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ∈ ℝ →
∃!𝑧 ∈ ℤ
(-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤))) |
| 4 | | zre 11381 |
. . . . . . 7
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℝ) |
| 5 | | leneg 10531 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
| 6 | 4, 5 | sylan 488 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
| 7 | 6 | ancoms 469 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥 ≤ 𝐴 ↔ -𝐴 ≤ -𝑥)) |
| 8 | | znegcl 11412 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℤ → -𝑤 ∈
ℤ) |
| 9 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑦 = -𝑤 → (𝑦 ≤ 𝐴 ↔ -𝑤 ≤ 𝐴)) |
| 10 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑦 = -𝑤 → (𝑦 ≤ 𝑥 ↔ -𝑤 ≤ 𝑥)) |
| 11 | 9, 10 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑦 = -𝑤 → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥))) |
| 12 | 11 | rspcv 3305 |
. . . . . . . . . 10
⊢ (-𝑤 ∈ ℤ →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → (-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥))) |
| 13 | 8, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℤ →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → (-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥))) |
| 14 | | zre 11381 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℤ → 𝑤 ∈
ℝ) |
| 15 | | lenegcon1 10532 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-𝑤 ≤ 𝐴 ↔ -𝐴 ≤ 𝑤)) |
| 16 | 15 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤 ≤ 𝐴 ↔ -𝐴 ≤ 𝑤)) |
| 17 | | lenegcon1 10532 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑤 ≤ 𝑥 ↔ -𝑥 ≤ 𝑤)) |
| 18 | 4, 17 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝑤 ≤ 𝑥 ↔ -𝑥 ≤ 𝑤)) |
| 19 | 18 | adantrl 752 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤 ≤ 𝑥 ↔ -𝑥 ≤ 𝑤)) |
| 20 | 16, 19 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) →
((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) ↔ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 21 | 14, 20 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) →
((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) ↔ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 22 | 21 | biimpd 219 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) →
((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 23 | 22 | ex 450 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
| 24 | 23 | com23 86 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℤ → ((-𝑤 ≤ 𝐴 → -𝑤 ≤ 𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
| 25 | 13, 24 | syld 47 |
. . . . . . . 8
⊢ (𝑤 ∈ ℤ →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
| 26 | 25 | com13 88 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → (𝑤 ∈ ℤ → (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
| 27 | 26 | ralrimdv 2968 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) → ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 28 | | znegcl 11412 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℤ → -𝑦 ∈
ℤ) |
| 29 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑤 = -𝑦 → (-𝐴 ≤ 𝑤 ↔ -𝐴 ≤ -𝑦)) |
| 30 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑤 = -𝑦 → (-𝑥 ≤ 𝑤 ↔ -𝑥 ≤ -𝑦)) |
| 31 | 29, 30 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑤 = -𝑦 → ((-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
| 32 | 31 | rspcv 3305 |
. . . . . . . . . 10
⊢ (-𝑦 ∈ ℤ →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
| 33 | 28, 32 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
| 34 | | zre 11381 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
| 35 | | leneg 10531 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑦 ≤ 𝐴 ↔ -𝐴 ≤ -𝑦)) |
| 36 | 35 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦 ≤ 𝐴 ↔ -𝐴 ≤ -𝑦)) |
| 37 | | leneg 10531 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 ≤ 𝑥 ↔ -𝑥 ≤ -𝑦)) |
| 38 | 4, 37 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝑥 ↔ -𝑥 ≤ -𝑦)) |
| 39 | 38 | adantrl 752 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦 ≤ 𝑥 ↔ -𝑥 ≤ -𝑦)) |
| 40 | 36, 39 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
| 41 | 34, 40 | sylan 488 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦))) |
| 42 | 41 | exbiri 652 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
| 43 | 42 | com23 86 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℤ → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
| 44 | 33, 43 | syld 47 |
. . . . . . . 8
⊢ (𝑦 ∈ ℤ →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
| 45 | 44 | com13 88 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → (𝑦 ∈ ℤ → (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
| 46 | 45 | ralrimdv 2968 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑤 ∈ ℤ
(-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤) → ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) |
| 47 | 27, 46 | impbid 202 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) →
(∀𝑦 ∈ ℤ
(𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 48 | 7, 47 | anbi12d 747 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
| 49 | 48 | reubidva 3125 |
. . 3
⊢ (𝐴 ∈ ℝ →
(∃!𝑥 ∈ ℤ
(𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
| 50 | | znegcl 11412 |
. . . 4
⊢ (𝑥 ∈ ℤ → -𝑥 ∈
ℤ) |
| 51 | | znegcl 11412 |
. . . . 5
⊢ (𝑧 ∈ ℤ → -𝑧 ∈
ℤ) |
| 52 | | zcn 11382 |
. . . . . 6
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℂ) |
| 53 | | zcn 11382 |
. . . . . 6
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
| 54 | | negcon2 10334 |
. . . . . 6
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 = -𝑥 ↔ 𝑥 = -𝑧)) |
| 55 | 52, 53, 54 | syl2an 494 |
. . . . 5
⊢ ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 = -𝑥 ↔ 𝑥 = -𝑧)) |
| 56 | 51, 55 | reuhyp 4896 |
. . . 4
⊢ (𝑧 ∈ ℤ →
∃!𝑥 ∈ ℤ
𝑧 = -𝑥) |
| 57 | | breq2 4657 |
. . . . 5
⊢ (𝑧 = -𝑥 → (-𝐴 ≤ 𝑧 ↔ -𝐴 ≤ -𝑥)) |
| 58 | | breq1 4656 |
. . . . . . 7
⊢ (𝑧 = -𝑥 → (𝑧 ≤ 𝑤 ↔ -𝑥 ≤ 𝑤)) |
| 59 | 58 | imbi2d 330 |
. . . . . 6
⊢ (𝑧 = -𝑥 → ((-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤) ↔ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 60 | 59 | ralbidv 2986 |
. . . . 5
⊢ (𝑧 = -𝑥 → (∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤) ↔ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 61 | 57, 60 | anbi12d 747 |
. . . 4
⊢ (𝑧 = -𝑥 → ((-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤)))) |
| 62 | 50, 56, 61 | reuxfr 4894 |
. . 3
⊢
(∃!𝑧 ∈
ℤ (-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → -𝑥 ≤ 𝑤))) |
| 63 | 49, 62 | syl6rbbr 279 |
. 2
⊢ (𝐴 ∈ ℝ →
(∃!𝑧 ∈ ℤ
(-𝐴 ≤ 𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
| 64 | 3, 63 | mpbid 222 |
1
⊢ (𝐴 ∈ ℝ →
∃!𝑥 ∈ ℤ
(𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) |